In order to increase our understanding of magma mixing processes and their impact on the geochemical evolution of silicate melt we present in the following works, the first set of experiments performed using natural basaltic and rhyolitic melts. In particular, we investigate the interplay of physical dynamics and chemical exchanges between these two melts using time-series mixing experiments performed under controlled, chaotic, dynamical conditions. The variation of major and trace elements is studied in detail by electron microprobe (EMPA) and Laser Ablation ICP-MS (LA-ICP-MS) and the time-evolution of chemical exchanges during mixing is investigated. Using the concentration variance as a proxy to measure the rate of chemical element homogenization in time, a model to quantify chemical element mobility during chaotic mixing of natural silicate melts is proposed.
The morphology of mixing patterns at different times is quantified by measuring their fractal dimension and an empirical relationship between mixing time and morphological complexity is derived. The complexity of mixing patterns is also compared to the degree of homogenization of chemical elements during mixing and empirical relationships are established between the fractal dimension and the variation of concentration variance of chemical elements in time. Finally we discuss the petrological and volcanological implications of this work.