Die vorliegende Arbeit behandelt zwei unterschiedliche Anwendungen aus dem Bereich der numerischen Seismologie: Das erste Thema umfasst die Entwicklung und Anwendung eines Programms zur Berechnung der lokalen Wellenausbreitung
in seismischen Störungszonen (Fault Zones) mit spezieller Fokussierung auf geführte Wellen (Trapped Waves). Dieser Wellentyp wird an vielen Störungszonen beobachtet und aus seinen Eigenschaften können Informationen über die jeweilige Tiefenstruktur abgeleitet werden.
Das zweite Thema dieser Arbeit behandelt die Entwicklung und Anwendung zweier Verfahren zur Berechnung der globalen Wellenausbreitung, also der Ausbreitung seismischer Wellen durch die gesamte Erde einschließlich des äußeren und inneren Erdkerns. Die verwendeten Methoden ermöglichen es, kleinräumige Strukturen in großen Tiefen wie zum Beispiel die Streueigenschaften des Erdmantels oder die kleinskalige Geschwindigkeitsstruktur an der Kern-Mantelgrenze in knapp 2900 km Tiefe zu untersuchen.
Wellenausbreitung in seismischen Störungszonen:
Seismische Störungszonen, wie zum Beispiel der San Andreas Fault in Kalifornien, zeigen auf beeindruckende Weise, wie die Gestalt der Erdoberfläche durch seismische Aktivität als Folge tektonischer Prozesse geprägt wird. Die genaue Kenntnis der Tiefenstruktur einer Störungszone hingegen bietet zusätzlich einen Einblick in die vergangene Seismizität, die die Struktur der jeweiligen Störung geprägt hat. Neben den tektonischen Eigenschaften einer Region lassen sich aus der Tiefenstruktur auch Voraussagen über Häufigkeit und zu erwartende Stärke zukünftiger Erdbeben ableiten. Da Erdbeben vorzugsweise in solchen
Störungszonen auftreten, ist eine möglichst genaue Kenntnis der Geometrie einer Schwächezone wichtig, um Regionen mit erhöhtem Gefährdungspotenzial zu erkennen.
Für die Untersuchung der Tiefenstruktur einer Störungszone stehen in vielen Fällen ausschließlich Messungen von der Erdoberfläche zur Verfügung, etwa von seismischen Netzen, die in unmittelbarer Umgebung oder direkt auf einer Störung
platziert wurden. Ereignet sich nun ein Erdbeben in einigen Kilometern Tiefe innerhalb der Störungszone, breitet sich ein Teil der angeregten seismischen Wellen durch die gesamte Störungszone bis zur Erdoberfläche aus, wo sie
registriert werden. Die aufgezeichneten Signale werden somit entlang ihres gesamten Laufweges durch die Struktur der Störungszone beeinflusst, was die Ableitung der tiefenabhängigen Struktur aus den Messdaten erschwert.
Um trotzdem ein genaues seismisches Abbild einer Störungszone zu bekommen, analysiert man unterschiedliche Wellentypen im Seismogramm, wodurch ein Maximum an Strukturinformation abgeleitet werden kann. Einer dieser
Wellentypen, der sich durch besondere Eigenschaften auszeichnet, ist die geführte Welle (Trapped Wave). Diese entsteht, wenn eine Störungszone einen ausgeprägten vertikal ausgedehnten Bereich drastisch reduzierter seismischer Ausbreitungsgeschwindigkeit (Low Velocity Layer) und nicht zu komplexer Geometrie besitzt, der als seismischer Wellenleiter wirkt. In einem solchen Wellenleiter kann sich eine geführte Welle ausbreiten, die als mit Abstand stärkstes Signal an der Erdoberfläche registriert wird, also deutlich stärkere Bodenbewegungen hervorruft als etwa die direkte Welle. Dieser Verstärkungseffekt hat unter anderem Konsequenzen für die Abschätzung der seismischen Gefährdung in der Nähe einer Störungszone, zum Beispiel wenn die Störungszone durch dicht besiedeltes Gebiet verläuft. Geführte Wellen beinhalten aufgrund ihrer hohen Sensitivität bezüglich der
Eigenschaften von Niedergeschwindigkeitszonen Strukturinformationen, die aus anderen Wellentypen nicht abgeleitet werden können. Daher leistet das Verständnis dieses Wellentyps einen wichtigen Beitrag für die Ableitung
möglichst vollständiger Modelle von Störungszonen.
Ausbreitung von SH- und P-SV Wellen in Erdmantel und der ganzen Erde:
Das allgemeine Verständnis der Struktur und Dynamik des tiefen Erdinneren basier