Papers Read on AI

ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code


Listen Later

Despite Large Language Models (LLMs) like GPT-4 achieving impressive results in function-level code generation, they struggle with repository-scale code understanding (e.g., coming up with the right arguments for calling routines), requiring a deeper comprehension of complex file interactions. Also, recently, people have developed LLM agents that attempt to interact with repository code (e.g., compiling and evaluating its execution), prompting the need to evaluate their performance. These gaps have motivated our development of ML-Bench, a benchmark rooted in real-world programming applications that leverage existing code repositories to perform tasks. Addressing the need for LLMs to interpret long code contexts and translate instructions into precise, executable scripts, ML-Bench encompasses annotated 9,641 examples across 18 GitHub repositories, challenging LLMs to accommodate user-specified arguments and documentation intricacies effectively. To evaluate both LLMs and AI agents, two setups are employed: ML-LLM-Bench for assessing LLMs' text-to-code conversion within a predefined deployment environment, and ML-Agent-Bench for testing autonomous agents in an end-to-end task execution within a Linux sandbox environment. Our findings indicate that while GPT-4o leads with a Pass@5 rate surpassing 50%, there remains significant scope for improvement, highlighted by issues such as hallucinated outputs and difficulties with bash script generation. Notably, in the more demanding ML-Agent-Bench, GPT-4o achieves a 76.47% success rate, reflecting the efficacy of iterative action and feedback in complex task resolution. Our code, dataset, and models are available at https://github.com/gersteinlab/ML-bench.

2023: Yuliang Liu, Xiangru Tang, Zefan Cai, Junjie Lu, Yichi Zhang, Yan Shao, Zexuan Deng, Helan Hu, Zengxian Yang, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao, Zheng Li, Liang Chen, Yiming Zong, Yan Wang, Tianyu Liu, Zhiwei Jiang, Baobao Chang, Yujia Qin, Wangchunshu Zhou, Yilun Zhao, Arman Cohan, Mark B. Gerstein



https://arxiv.org/pdf/2311.09835
...more
View all episodesView all episodes
Download on the App Store

Papers Read on AIBy Rob

  • 3.7
  • 3.7
  • 3.7
  • 3.7
  • 3.7

3.7

3 ratings


More shows like Papers Read on AI

View all
Stuff You Should Know by iHeartPodcasts

Stuff You Should Know

77,380 Listeners

The AI in Business Podcast by Daniel Faggella

The AI in Business Podcast

161 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

442 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

296 Listeners

AI Today Podcast by AI & Data Today

AI Today Podcast

145 Listeners

Darknet Diaries by Jack Rhysider

Darknet Diaries

7,855 Listeners

Last Week in AI by Skynet Today

Last Week in AI

280 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

90 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

72 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

428 Listeners

Arxiv Papers by Igor Melnyk

Arxiv Papers

3 Listeners