Aktuelle Methoden zur dynamischen Modellierung von biologischen Systemen sind für Benutzer ohne
mathematische Ausbildung oft wenig verständlich. Des Weiteren fehlen sehr oft genaue Daten und detailliertes Wissen über Konzentrationen, Reaktionskinetiken oder regulatorische Effekte. Daher erfordert eine computergestützte Modellierung eines biologischen Systems, mit Unsicherheiten und grober Information umzugehen, die durch qualitatives Wissen und natürlichsprachliche Beschreibungen zur Verfügung gestellt wird.
Der Autor schlägt einen neuen Ansatz vor, mit dem solche Beschränkungen überwunden werden können. Dazu wird eine Petri-Netz-basierte graphische Darstellung von Systemen mit einer leistungsstarken und dennoch intuitiven Fuzzy-Logik-basierten Modellierung verknüpft. Der Petri Netz und Fuzzy Logik (PNFL) Ansatz erlaubt eine natürlichsprachlich-basierte Beschreibung von biologischen Entitäten sowie eine Wenn-Dann-Regel-basierte Definition von Reaktionen. Beides kann einfach und direkt aus qualitativem Wissen abgeleitet werden. PNFL verbindet damit qualitatives Wissen und quantitative Modellierung.