PaperPlayer biorxiv bioinformatics

Network-based Virus-Host Interaction Prediction with Application to SARS-CoV-2


Listen Later

Link to bioRxiv paper:
http://biorxiv.org/cgi/content/short/2020.11.09.375394v1?rss=1
Authors: Du, H., Chen, F., Liu, H., Hong, P.
Abstract:
COVID-19, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has quickly become a global health crisis since the first report of infection in December of 2019. However, the infection spectrum of SARS-CoV-2 and its comprehensive protein-level interactions with hosts remain unclear. There is a massive amount of under-utilized data and knowledge about RNA viruses highly relevant to SARS-CoV-2 and their hosts' proteins. More in-depth and more comprehensive analyses of that knowledge and data can shed new insight into the molecular mechanisms underlying the COVID-19 pandemic and reveal potential risks. In this work, we constructed a multi-layer virus-host interaction network to incorporate these data and knowledge. A machine learning-based method, termed Infection Mechanism and Spectrum Prediction (IMSP), was developed to predict virus-host interactions at both protein and organism levels. Our approach revealed five potential infection targets of SARS-CoV-2, which deserved public health attention, and eight highly possible interactions between SARS-CoV-2 proteins and human proteins. Given a new virus, IMSP can utilize existing knowledge and data about other highly relevant viruses to predict multi-scale interactions between the new virus and potential hosts.
Copy rights belong to original authors. Visit the link for more info
...more
View all episodesView all episodes
Download on the App Store

PaperPlayer biorxiv bioinformaticsBy Multimodal LLC