Papers Read on AI

NnFormer: Interleaved Transformer for Volumetric Segmentation


Listen Later

Transformers, the default model of choices in natural language processing, have drawn scant attention from the medical imaging community. Given the ability to exploit long-term dependencies, transformers are promising to help atypical convolutional neural networks (convnets) to overcome its inherent shortcomings of spatial inductive bias. However, most of recently proposed transformer-based segmentation approaches simply treated transformers as assisted modules to help encode global context into convolutional representations without investigating how to optimally combine self-attention (i.e., the core of transformers) with convolution. To address this issue, in this paper, we introduce nnFormer (i.e., not-another transFormer), a powerful segmentation model with an interleaved architecture based on empirical combination of self-attention and convolution.
2021: Hong-Yu Zhou, Jiansen Guo, Yinghao Zhang, Lequan Yu, Liansheng Wang, Yizhou Yu
Ranked #1 on Medical Image Segmentation on ACDC
https://arxiv.org/pdf/2109.03201v3.pdf
...more
View all episodesView all episodes
Download on the App Store

Papers Read on AIBy Rob

  • 3.7
  • 3.7
  • 3.7
  • 3.7
  • 3.7

3.7

3 ratings