Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02

On Extensions of AF2 with Monotone and Clausular (Co)inductive Definitions


Listen Later

This thesis discusses some extensions of second-order logic AF2 with primitive constructors representing least and greatest fixed points of monotone operators, which allow to define predicates by induction and
coinduction. Though the expressive power of second-order logic has been well-known for a long time and suffices to define (co)inductive predicates by means of its (co)induction principles, it is more user-friendly to have a direct way of defining predicates inductively. Moreover recent applications in computer science oblige to consider also coinductive definitions useful for handling infinite objects, the most prominent example being the data type of streams or infinite lists. Main features of our approach are the use clauses in the (co)inductive definition mechanism, concept which simplifies the syntactic shape of the predicates, as well as the inclusion of not only (co)iteration but also primitive (co)recursion principles and in the case of coinductive definitions an inversion principle.
For sake of generality we consider full monotone, and not only positive definitions, after all positivity is only used to ensure monotonicity.
Working towards practical use of our systems we give them realizability interpretations where the systems of realizers are strongly normalizing extensions of the second-order polymorphic lambda calculus, system F in
Curry-style, with (co)inductive types corresponding directly to the logical systems via the Curry-Howard correspondence. Such realizability interpretations are therefore not reductive: the definition of realizability for a (co)inductive definition is again a (co)inductive definition. As main application of realizability we extend the so-called programming-with-proofs paradigm of Krivine and Parigot to our logics, by means of which a correct program of the lambda calculus can be extracted from a proof in the logic.
...more
View all episodesView all episodes
Download on the App Store

Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02By Ludwig-Maximilians-Universität München

  • 5
  • 5
  • 5
  • 5
  • 5

5

1 ratings


More shows like Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02

View all
Theoretical Physics Schools (ASC) by The Arnold Sommerfeld Center for Theoretical Physics (ASC)

Theoretical Physics Schools (ASC)

2 Listeners

Katholisch-Theologische Fakultät - Digitale Hochschulschriften der LMU by Ludwig-Maximilians-Universität München

Katholisch-Theologische Fakultät - Digitale Hochschulschriften der LMU

0 Listeners

MCMP – Mathematical Philosophy (Archive 2011/12) by MCMP Team

MCMP – Mathematical Philosophy (Archive 2011/12)

6 Listeners

Hegel lectures by Robert Brandom, LMU Munich by Robert Brandom, Axel Hutter

Hegel lectures by Robert Brandom, LMU Munich

6 Listeners

John Lennox - Hat die Wissenschaft Gott begraben? by Professor John C. Lennox, University of Oxford

John Lennox - Hat die Wissenschaft Gott begraben?

3 Listeners

MCMP – Philosophy of Science by MCMP Team

MCMP – Philosophy of Science

2 Listeners

MCMP – Philosophy of Mathematics by MCMP Team

MCMP – Philosophy of Mathematics

2 Listeners

Epistemology and Philosophy of Science: Prof. Dr. Stephan Hartmann – HD by Ludwig-Maximilians-Universität München

Epistemology and Philosophy of Science: Prof. Dr. Stephan Hartmann – HD

1 Listeners

MCMP – Philosophy of Physics by MCMP Team

MCMP – Philosophy of Physics

4 Listeners

Center for Advanced Studies (CAS) Research Focus Evolutionary Biology (LMU) - HD by Center for Advanced Studies (CAS)

Center for Advanced Studies (CAS) Research Focus Evolutionary Biology (LMU) - HD

0 Listeners