Papers Read on AI

On the limits of agency in agent-based models


Listen Later

Agent-based modeling (ABM) seeks to understand the behavior of complex systems by simulating a collection of agents that act and interact within an environment. Their practical utility requires capturing realistic environment dynamics and adaptive agent behavior while efficiently simulating million-size populations. Recent advancements in large language models (LLMs) present an opportunity to enhance ABMs by using LLMs as agents with further potential to capture adaptive behavior. However, the computational infeasibility of using LLMs for large populations has hindered their widespread adoption. In this paper, we introduce AgentTorch -- a framework that scales ABMs to millions of agents while capturing high-resolution agent behavior using LLMs. We benchmark the utility of LLMs as ABM agents, exploring the trade-off between simulation scale and individual agency. Using the COVID-19 pandemic as a case study, we demonstrate how AgentTorch can simulate 8.4 million agents representing New York City, capturing the impact of isolation and employment behavior on health and economic outcomes. We compare the performance of different agent architectures based on heuristic and LLM agents in predicting disease waves and unemployment rates. Furthermore, we showcase AgentTorch's capabilities for retrospective, counterfactual, and prospective analyses, highlighting how adaptive agent behavior can help overcome the limitations of historical data in policy design. AgentTorch is an open-source project actively being used for policy-making and scientific discovery around the world. The framework is available here: github.com/AgentTorch/AgentTorch.

2024: Ayush Chopra, Shashank Kumar, Nurullah Giray-Kuru, Ramesh Raskar, A. Quera-Bofarull



https://arxiv.org/pdf/2409.10568v1
...more
View all episodesView all episodes
Download on the App Store

Papers Read on AIBy Rob

  • 3.7
  • 3.7
  • 3.7
  • 3.7
  • 3.7

3.7

3 ratings


More shows like Papers Read on AI

View all
Stuff You Should Know by iHeartPodcasts

Stuff You Should Know

77,380 Listeners

The AI in Business Podcast by Daniel Faggella

The AI in Business Podcast

161 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

442 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

296 Listeners

AI Today Podcast by AI & Data Today

AI Today Podcast

145 Listeners

Darknet Diaries by Jack Rhysider

Darknet Diaries

7,855 Listeners

Last Week in AI by Skynet Today

Last Week in AI

280 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

90 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

72 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

428 Listeners

Arxiv Papers by Igor Melnyk

Arxiv Papers

3 Listeners