Uptime Podcast – Weather Guard Lightning Tech

Padge LLC Prevents Harmonics Damage


Listen Later

Weather Guard Lightning Tech


Padge LLC Prevents Harmonics Damage

Joseph Chacon, CEO of Padge LLC, discusses the impact of electrical harmonics on wind turbines and solar systems, providing insights into causes, consequences, and effective solutions for improving power quality.

Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard’s StrikeTape Wind Turbine LPS retrofit. Follow the show on FacebookYouTubeTwitterLinkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes’ YouTube channel here. Have a question we can answer on the show? Email us!

Welcome to Uptime Spotlight, shining Light on Wind. Energy’s brightest innovators. This is the Progress Powering tomorrow.

Allen Hall: Joe, welcome to the show. 

Joseph Chacon: Thank you. I appreciate it. 

Allen Hall: Well, I’m glad we connected, uh, through Jon Zalar, I believe, and we don’t talk electrical power creation or what that. Kind of power we’re creating and what the effect of that power is on systems downstream very often, uh, the Uptime podcast, because there’s so many wind turbine issues, is mostly focused on mechanical problems.

But we’re finding that more and more problems may have an electrical origin. We wanted to get an expert in here that would be you to come help us on harmonics because there are requirements about harmonics. 

Joseph Chacon: There are, uh, IEEE five 19 governs [00:01:00] the requirements for harmonics. At the point of common coupling.

Allen Hall: That’s correct. And your prior experiences with ge, which is now GE Renova down in South Carolina, that’s correct. But you were involved, maybe give a brief description of the things you’re working on because when electrical people talk, um, kind of gets lost in translation. You were knee deep, maybe waist deep, maybe eyeballs deep and electrical 

Joseph Chacon: power at GE Renova?

No, not, not knee deep, not weight deep, waist deep. I was baptized, completely immersed all the way in. I came shortly after the Enron acquisition. Um, I was one of the electrical engineering managers at the time. We had, uh, I think two or three at the time. Um, this was pretty early on. Uh, I got out of that because, uh, I’m, I like management, but I, I like electrical engineering, so I wanted to go back to being an individual contributor.

Um, so I’ve touched just about [00:02:00] every electrical thing you can think of in a wind turbine. And also in solar 

Joel Saxum: as well. You know, a little bit of a sidebar here ’cause I want, we want to definitely get into this deep technical conversation, but Joe, you touched on something that happens to people, right? You’re a really good engineer, you’ve run a team, you’ve solved some problems.

So now you get promoted to management, but you don’t get to engineer as much anymore. So you get, like, you get, you start being leadership and like doing all these things, how to manage people, how to run a team, this, that, and that’s great. We need that. The industry, every industry globally, we need to be able to do those things.

But for engineers that have engineer at heart, and I’m, I’m also looking at you, Alan Hall. Uh, they, they wanna be able to engineer, right? They wanna be able to do stuff to make a difference to, to, to get hands on with a problem. So, so you, so you’ve done that though, right? That that’s you, you are now, uh, Josh Shahan is, uh, pad LLC and 

Joseph Chacon: pod is short for Padre, which is what my kids and grandchildren call me.

They just shortened it from Padre to podge. ’cause saying two [00:03:00]syllables was too much and I liked it. 

Joel Saxum: Yeah, I like that. Okay, so, so, so like we said, uh, you, you, you guys, you’re getting deep into harmonics and other issues. You get called in by Solar Farms to solve problems and, and this is the thing Alan and I were kind of talking about off air a little bit is.

W we have a bit of a culture like in wind right now of electrical problem, swap, swap apart, swap apart in, swap apart out. But nobody’s looking at the, the root cause of why or why did this thing fail, and how can we, you know. Make this more robust for the future. And that doesn’t just stop at components in the turbine.

It’s, it’s BOP, you know, and this is, like you said, also solar and, and other industrial facilities as well. But that’s what you tackle, right? 

Joseph Chacon: Yeah. And you know, you mentioned John Zellar, uh, great, great root cause analysis guy. Uh, does fishbone, uh, ad modeling, things like that, um, what’s your observation that you’re seeing?

I think is correct. People ignore. [00:04:00] One of the fundamental root causes for a lot of issues, um, not just in renewable energy, but anywhere you have, uh, large amounts of nonlinear loading, uh, these days. That’s primarily coming from data centers. Um, with the advent of the diode six pulse front end, uh, variable frequency drive, uh, IGBTs, any type of switching device.

It’s only getting worse. It will never get better because we are putting more and more non-linear loads on the utility and fewer and fewer linear loads. Even our lighting today, we don’t use incandescent anymore. It’s all either LED, well, we used to do fluorescent, but LED is a horrific offender for harmonics.

So, and I hate to pick on that technology because. They all really are. Um, so a solar inverter, a wind turbine converter, uh, a UPS, any type of [00:05:00]device is going to introduce more harmonic content into the grid. So you got the issue where the device itself has harmonic content, couple to a grid that’s getting more and more harmonic content already on it.

So the situation is definitely getting more and more exacerbated. 

Allen Hall: So some of those harmonics have really significant consequences. Uh, if you go to podge LLC on YouTube, you can watch some of the discussion there and walk through the equations about what harmonics can do to equipment on generators. Up in the the wind turbines, you can actually damage some of the Y connections on those, uh, defi generators.

It can causes all kinds of problems. And I know one of the issues that’s, and it’s being sussed out right now, so we’re talking about it live as it’s happening, is, uh, they’re seeing transients come from the line back up to, to the turbine and are causing problems to the electronics. Straight harmonics.

And the same thing coming [00:06:00] out of some of the turbines is the harmonics can be strong. And in one of your videos you talked about what kind of damage you can do with a transformer if you have harmonics that are significant enough. It’s, it’s surprising. How you can shorten the life of a transformer 

Joseph Chacon: correct, or any magnetic circuit, uh, generators, motors, transformers, anything that’s going to take, uh, electrical conversions to magnetic conversions and back or vice versa, any type of thing like that.

Uh, they cause extreme dielectric stress and extreme temperature changes. Um, and both of ’em are damaging. To devices like transformers, motors, generators, et cetera. 

Allen Hall: Yeah, because transformers and all that sort of magnetic equipment is designed to work around a core frequency. Typically 50 hertz or 60 hertz, depending on where in the world you are.

When you put other frequency components on that equipment, it’s not designed to do that. So that turns into a lot of heat a lot of times, [00:07:00] and then you over temp or shorten a lifetime of. Transformers on the pads and up tower in some cases that don’t. If you have a failure like that, uh, at a wind farm, I saw it most recently, uh, a couple of weeks ago, where they’re replacing transformers, like, wow, it’s only been there a year or two.

That shouldn’t happen. There are other, so those kind of failures, unless you’re paying attention, are just gonna repeat, right? Because replacing a. Pad transformer with another pad, transformer doesn’t remove the source of the problem. It just puts in another fuse in the circuit. 

Joseph Chacon: Correct. And you know, let’s say you put it in, in pick a year, January of 2015, and your harmonic content from utility can change over time.

So many times it’s worth just taking a look at it. Um, in one of the videos you talked about. I promoted a [00:08:00] Fluke 1777 power quality analyzer tool that I use, and I rent that tool out to people that are wanting to do a study. Uh, and that’s an economical way to do a study. Um, the technician or engineer or whoever puts that in does not necessarily need to know a lot about harmonics to set that up.

Uh, you’re going to be putting in either three or four cts, depending upon whether you’re a four wire or a three wire system. Then connections to your bus for voltage, and then you turn the fluke on and you verify that your currents are going in the right direction. So in Phase A current, it’s phase A voltage, and you start a session and then you mail it back to me and I’ll give you the report.

Um, and it does a lot more than just harmonics. Uh, and I basically, I run an IEEE five 19 report. It does sags swells, it does super harmonics. It does intra harmonics. Super harmonics [00:09:00] are harmonics that are higher than 50, um, 50 times the fundamental. So that’s 50 times 60, uh, for 60 hertz people, or 50 times 50 for 50 hertz people.

And you, you mentioned Alan, that Transformers motors are designed for a certain frequency. Um, if you take a motor or a transformer and look at it, it’s gonna tell you the frequency. Sometimes it’s dual rate at 50 or 60. Um, but the engineer that designed that transformer motor is gonna take certain things into account related to the magnetic side to make sure that it’s able to operate for that broad frequency range.

Low frequencies are quite bad. In fact, as you get towards dc DC you can’t use magnetic circuits as a rule. I mean, there’s ways to make DC motors and things like that. And then as you get to tire frequencies, um. Then like 400 hertz is a common in aviation, you know, it’s specifically designed for that frequency.

So when you introduce [00:10:00] even small amounts, it could wreak havoc 

Joel Saxum: over time. So a question for you, just I we talking, IEE here. I. Do you get into, this is like a, as a, as a podge LLC thing. Do you get into more of these studies at the development stage, or is it once they are deployed and having problems, when do they call?

Joe, 

Joseph Chacon: you know that, that’s a very, very good question, Joel. Um, I do both. Uh, so if you, there’s a fixed installation. I could come in and put up the Fluke 1777 and conduct that study for that person or the company, or they could do it themselves and just, uh, FedEx or UPS me back the equipment and I could interpret the data.

If you’re doing a new installation, I use a software called Easy Power. There’s others, uh, SKM, etap. Um, you know, if you ask me what type of phone I use, I’ll tell you I got an Android. Why do I have an Android? Because that’s what I’m comfortable with. That’s what I use. I’m not [00:11:00] opposed to Apple or anything like that.

Why do I use Easy Power? Because that’s what I use. I mean, it’s, you get comfortable with what you use. Um, 20 years ago I used SKM. But easy power. And there’s a video on that YouTube series I mentioned about how to use easy power to do IEEE five 19 harmonic studies before you even put it in. Um, so that can be done as wealth.

I. And I can model it with easy power after the fact too. Uh, but Fluke makes it so easy. It’s just hook up 6, 7, 8, 9 leads, whatever, click record, come back a few hours later and populates the report. Then when you want to talk about the fix, then I might have to use Easy Power to help with. Do you want a, so there’s lots of fixes and, and I hope we get to talking about some of the fixes here in a minute.

Joel Saxum: That, that’s what I wanted to dive into next. ’cause I’m thinking, okay, earlier we talked, uh, RCA, how these, you know, what’s happening here And my mind immediately [00:12:00] goes to, and, and everybody that’s listening here knows I’m not an electrical engineer. Uh, like, not nothing nuts whatsoever. You know, like I, I, I put uh, KC lights on a truck once and almost burnt it down.

So that’s not my, that’s not my thing, but in my mind, I, this goes through this, this unstable grid with a lot of frequency. So I go like, okay, is it a grid macro problem? Like, do we need to have more flywheel type technology on the grid to even these things out? And I’m thinking about like, I’m in Texas here, right?

So there’s all kinds of renewables, all kinds of, you know, up, down, up, down, up, down. We talk about duck curves and we can look at a graph. Yeah, that’s the entire grid. But when you talk about at the wind farm or solar farm level, there’s so much differing load. And now we’re adding batteries and we’re adding data centers and all that stuff.

So there’s, there’s multiple. Entry points, I think, to solve this. And one of ’em is, is like, is is Joe Shahan standing in front of Ercot and telling them how to fix their problems at a macro level. But what we, but I think what we wanna dive into here is there’s also filters and other [00:13:00] fixes from, you know, the abbs and the Siemens and the Schneiders of the world that can fix things at a local level.

So what are some of these problems that you see and then fixes that you prescribe to solve those problems? 

Joseph Chacon: I must clarify, it’s not a utility problem unless the utility is using massive amounts of renewable energy. Um, with that said, though, uh, whoever makes the wind turbine or whatever the asset is, you’re gonna be required for the point of interconnect to do that IEEE five 19 study.

Um, what causes the problem is on the load side. Because you have the most classic case of this is a six pulse, uh, rectifier on the front end of a variable frequency drive. Um, before the advent of that, people would just put across the line starters or across the line contactors to turn on [00:14:00] a motor. And a motor is a very linear device.

The only issue you might have with that are dips and swells. Uh, or mostly dips for that matter. But when you put a variable frequency drive on there, which is a wonderful, wonderful device, it gives you absolute control over that motor, and you wanna put it in all day, every day. But when you put it in, you’re gonna wanna put a line reactor in front of it.

And if your VFD is here and your motor is so many feet away from your VFD, you’re gonna wanna put in different types of things as well. And those could be DVDT filters. Our sway filters ultimately. And I mean, sometimes you can just do a basic choke, but you’re gonna usually look at A-D-V-D-T filter or a sway filter between those two devices.

So those are what you’re gonna do at the source for where you are creating your harmonic content that gets reflected back up onto the utility. So those are very simple things to do that [00:15:00] in my opinion, are no-brainers. And also use shielded cabling. Um. I, I preach this a lot between your VFD and your motor use shielded cabling.

Um, now let’s talk about if you’ve got all this in place and you still have massive amounts of harmonic content, what do you do? I’m in love with the active harmonic filter. This is the best thing since sliced bread. And I don’t wanna oversell it because, uh, uh, my wife says, you talk about it so much that you make me think you’re overselling it and I don’t want it.

That’s not what I’m trying to do here. But there’s tons of people, uh, companies that make an active harmonic filter and that has the capability at the point of common coupling of completely neutralizing your harmonic content. And this is the part that I like the most. Power factor correction. So power factor is, uh, just basically a ratio of, uh, [00:16:00] real power and reactive power.

Um, you want it to be as close to unity as possible, and that’s what the utility likes. So another side effect of excessive harmonic content is also lower power factor, um, when you accurately measure it. So an active harmonic filter. Um, it’s kinda like, I forget which law. I think it’s Newton’s third law for every force, there’s an equal and opposite force to go with it.

So if I just push that there, I’m not pushing back on it. Right? So if you have a, let’s say you have, I don’t know, 500 hertz of harmonic content that’s constantly being injected. An active harmonic filter will come in and basically do that. It’ll also do it for other frequencies all at the same time, completely counseling them out.

It really is a, a wonderful, wonderful device. And you don’t have to put it in series with anything. You put it in shunt and that means you could get close to [00:17:00] your point of common coupling. So on. So a point of common coupling. It, you could be def you could define it anywhere, but if you were gonna put this in, uh, let’s say at a a, a solar plant.

You could put this in at the output of the central inverter, or if you got a string of series, um, a series of string inverters, you could put it at the switchboard there as well. Um, and it’ll neutralize the harmonic content that’s there and even downstream as you get further and further away from ect Harmonic filter.

Your THDV, that’s total harmonic distortion, voltage, and a little bit of THDI, total harmonic distortion. Current goes down as well, but at the point of common coupling, you are putting the cadis on that and squashing it. It’s a pretty cool device and I. I don’t sell them, but I help specify them. 

Joel Saxum: So it’s like, it’s the, it’s the ultimate [00:18:00] noise canceling headphone for BOP.

Joseph Chacon: Yes. Perfect. That’s exactly the best analogy. I love that. 

Joel Saxum: So you go on Amazon, you buy a set of BS seven fifties, and you put ’em over the cable. Right. Then it’s good. 

Joseph Chacon: Very, 

Joel Saxum: very 

Joseph Chacon: similar technology. Yes. I, I love the analogy. I love the analogy. 

Allen Hall: Yeah. But it’s magic because 20 years ago you really couldn’t do that.

Or if you wanted to, it was super expensive and. If the prices come down, they’re still expensive, but you’re trying to eliminate a more complex problem that you didn’t necessarily create, right? So a lot of these harmonics. Or coming out of equipment that probably did not really meet the spec to begin with, and you’re just trying to find an ultimate solution that gets the plant running again.

And that’s the key here. It’s gonna save you a tremendous amount of time and effort if you can use active suppression instead of trying to fix the a hundred inverters that are creating this problem. And, 

Joel Saxum: and that’s 

Allen Hall: the one 

Joel Saxum: thing I want to touch on there, like, if, if, if this isn’t solved or if this is an issue and [00:19:00] you don’t use a certain fix.

Failures, the what are the components that will 

Joseph Chacon: fail any and everything. I, I was, uh, gosh, I did a presentation of harmonics a couple of days ago, and I used the Bugs Bunny analogy of the gremlin in the airplane. Uh, so in the 1940s during World War ii, many of the pilots would say, we have gremlins in our system.

Um. Gremlins are kind of like harmonics. They just show up in all types of different places, even even on mechanical devices, uh, related to bearings and other things. Um, they, it just shows power supplies can start going, motor bearings can start falling. All types of things can start failing. So 

Allen Hall: let’s talk about that.

There are a number of main bearings that are failing in wind turbines today that look like they have electrical discharge damage. And the, everybody who’s designing these systems, these wind turbines is pretty smart, right? There’s, there’s a lot of engineering that goes into a [00:20:00] wind turbine, but when you have undesirable harmonics, regardless of where they come from, can be from a SU piece of supplied equipment that those harmonics can show up on.

Mechanical devices like bearings, you can actually pick up harmonics physically from discharge, you’ll see discharges to bearings and. Uh, drive shafts all the things you wouldn’t expect. But here’s the one thing I wanted to talk to you about, Joe. Can you, can you kinda physically see like, oh, that’s an electrical discharge, or, oh, that’s a mechanical failure.

Are there differences between those two when it comes to mechanical failures from harmonics? 

Joseph Chacon: In cases like that, that’s where you wanna pull, pull in a holistic RCA approach. Uh, kinda like the gentleman John we’ve been talking about before. Um, John is a great systems engineer and he would help isolate electrical, mechanical, environmental, things like that, uh, and look at the contributing factors [00:21:00] that come in to producing all of those things.

The answer is yes, it could. Um, but not every time. And it takes, uh, a certain amount of surgical precision to diagnose the root causes or combination of root causes. 

Allen Hall: Yeah, it’s one of those Sherlock Holmes, uh, quotes, right? Once you’ve eliminated the impossible, everything else is. Possible. What is that?

What is that saying guys? It’s probable, there you go. Right It where you’ve, on the mechanical side, it seems like we’ve eliminated a lot of mechanical probabilities of, it could be something in manufacturing, it should be something in tempering, it should be something in coatings. And now we’re going down that rabbit hole of, I wonder if this is electrical discharge.

I wonder if the brushes are working. Do we need to install brushes? Do we need to add more grounding? In the towers to get rid of some of these or provide another path for the harmonics to go through. It’s a complex problem. But Joe, if they’re not bringing someone like you into help look at this problem, they’re not gonna solve it just by [00:22:00]

Joseph Chacon: eyeballing it.

Right? Right. And then finally, the most important consideration of all of this is, is economics. Um, and fin finance. Um, sometimes living with the devil, you know, is better. Then the angel, you don’t know. And uh, you notice I switched that up. Yeah. Everything has to have an ROI in a business case, and you can come in and solve this and probabilistically reduce all failures to six seven Sigma.

Um, but at what cost? Um, so what I try to do is help customers really dig into it electrically. And if, and if you got mechanical devices that are failing, then you’re gonna wanna look at it holistically. Um. In, in the case of solar and things like that, you know, you don’t have a lot of moving parts. Wind turbine’s a little bit more complicated.

Um, but at a facility, um, where you have motors and drives and things like that, um, it, it doesn’t always have [00:23:00] to be electrical or mechanical. Um, I, I became a thermal engineer over the, over the last few years, not because I liked thermodynamics. Because I had to keep my electronics cool and it was a discipline that I had to, to really get familiar with.

Um, the things related to bearings and other stuff like that. I’ve known some phenomenal bearing people, loads people through the years. That stuff I don’t understand. When you bring in a good system engineer and you’re able to holistically parse it out, uh, that, that would be the way to go on those things.

Joel Saxum: Absolutely. I like part of this conversation here, Joe, is that, um, okay, so this is, this resonates with Alan and I because we are talking with lightning protection people every day, right? Like, Hey, I have this issue, have this issue. There’s a specific fix or, or a, a prescribed fix for a lot of different things that can happen.

But it all needs to be based in a business case. If the business case doesn’t make sense. Or you can’t present a decent business [00:24:00] case to someone, you might as well just get off the phone. I, and, and I think that the wind industry really needs that, uh, renewables industry in general, but the wind industry really needs that if we’re trying to ’cause the goal, one of the goals of the, the uptime podcast here is to lower the, the LCOE if we can help make wind turbine or wind energy more competitive across the globe.

Beautiful. So the, the fact that you’re approaching business as business case forward, I really like to hear that. 

Joseph Chacon: That’s good feedback. I like that. 

Allen Hall: So Joe, I know we could go on all day and if you let me, I will. Uh, so we’re, we’re gonna have to invite you back because I think as Joel and I learn more about some of these harmonic problems that exist in turbines and, and also.

On the line, uh, we want to talk to you about possible solutions, what you can do about it, how to address it, even how to suss it out, diagnose it 

Joseph Chacon: related to, to lightning. Uh, I’m sure all the time you’re constantly looking at, did the utility cause this, did the device cause this, or did lightning cause [00:25:00] this?

So bringing that harmonic aspect in and utility power, quality in general. Harmonics is just a subset of the overall power quality. Um. It, it definitely does help differentiate things from something happened electrically. What was it? You know, that, that, that level of knowledge I think goes a long way.

Allen Hall: Yeah, it sure does. So Joe, how do people get a hold of you if they need to do a harmonic analysis or just take a, a kind of a holistic look at what’s happening electrically in their turbines or in their solar facilities? My 

Joseph Chacon: email is pretty easy. It’s [email protected]. Um, my website is padge.org as well.

Um, I encourage people to check out the YouTube videos because that’s to demystify harmonics a lot and, uh, educate people. Uh, my goal is if people and technicians and engineers are educated. It helps them become better for [00:26:00] their companies. And, uh, you know, I do like making a buck, but more than that, I like seeing people succeed.

And, um, I have a lot of people in various industries, uh, not just renewables. Um, I wanna give them the tools to be able to do what’s best for their companies. And that’s what. Helps me sleep good at night is is doing that in education. 

Allen Hall: So check out Joe’s website, it’s spelled padge.org and you can also check out Joe’s YouTube channel.

Same thing, Padge LLC. Just put into YouTube and it’ll come up. You can watch some of those videos on harmonics. Very interesting stuff, Joe. Appreciate you actually putting that up on the internet. Uh, it’s gonna help a lot of people. So Joe, thank you so much for being with us today. And yeah, we’ll talk soon.

Thank you, Allen. Thank you, Joel.

...more
View all episodesView all episodes
Download on the App Store

Uptime Podcast – Weather Guard Lightning TechBy Allen Hall, Rosemary Barnes, Joel Saxum & Phil Totaro