Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU

Paleozoic paleogeography of the south western part of the Central Asian Orogenic Belt


Listen Later

The Central Asian Orogenic Belt (CAOB) is one of the world's largest accretionary orogens, which was active during most of the Paleozoic. In recent years it has again moved into focus of the geological community debating how the acrreted lithospheric elements were geographical arranged and interacting prior and/or during the final amalgamation of Kazakhstania. In principal two families of competing models exist. One possible geodynmaic setting is based on geological evidence that a more or less continuous giant arc connecting Baltica and Siberia in the early Paleozoic was subsequently dissected and buckled. Alternatively an archipelago setting, similar to the present day south west Pacific was proposed.
This thesis collates three studies on the paleogeography of the south western part of the CAOB from the early Paleozoic until the latest Paleozoic to earliest Mesozoic. It is shown how fragments of Precambrian to early Paleozoic age are likely to have originated from Gondwana at high southerly paleolatitudes (~500 Ma), which got then accreted during the Ordovician (~460 Ma), before this newly created terrane agglomerate (Kazakhstania) migrated northwards crossing the paleo-equator. During the Devonian and the latest Early Carboniferous (~330 Ma) Kazakhstania occupied a stable position at about ~30°N. At least since this time the area underwent
several stages of counterclockwise rotational movements accompanying the final amalgamation of Eurasia (~320 - ~270 Myr). This overall pattern of
roughly up to 90° counterclockwise bending was replaced by internal relative rotational movements in the latest Paleozoic, which continued probably until the early Mesozoic or even the Cenozoic.
In Chapter 2 a comparison of declination data acquired by a remagnetization process during folding in the Carboniferous and coeval data from
Baltica and Siberia lead to a documentation and quantification of rotational movements within the Karatau Mountain Range. Based on this results it
is very likely that the rotational reorganization started in the Carboniferous and was active until at least the early Mesozoic. Additionally, the data shows that maximal declination deviation increases going from the Karatau towards the Tianshan Mountains (i.e. from North to South). This observation supports models claiming that Ural mountains, Karatau and Tianshan once formed a straight orogen subsequently bent into a orocline. The hinge of this orocline is probably hidden under the sediments of the Caspian basin.
In chapter 3 we show that inclination shallowing has affected the red terrigenous sediments of Carboniferous age from the North Tianshan. The
corrected inclination values put this part of the Tianshan in a paleolatitude of around 30°N during Carboniferous times. These results contradict previously published paleopositions of the area and suggest a stable latitudinal position between the Devonian and the Carboniferous.
Chapter 4 presents paleomagnetic data from early Paleozoic rocks from within the North Tianshan. They imply a second collisional accretion event
of individual terranes in the Ordovician.
To further constrain the dimensions of these early Paleozoic terranes, chapter 5 presents a compilation of all available paleomagnetic data from the extended study region of southern Kazakhstan and Kyrgyzstan. Apart from a broad coherence of paleolatitudes of all studies at least since the Ordovician and the exclusive occurrence of counterclockwise declination deviations, no areas with the same rotational history can be detected. Also a clear trend caused by oroclinal bending can not be observed. We conclude that first order counterclockwise oroclinal bending, shown in chapter 2, resulted in brittle deformation within the mountain belt and local block rotations.
In order to improve our understanding of intra-continental deformation a study combining the monitoring of recent deformation (Global Positioning System, GPS) with a paleomagnetic study of Ce
...more
View all episodesView all episodes
Download on the App Store

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMUBy Ludwig-Maximilians-Universität München


More shows like Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU

View all
Tonspur Forschung by Annik Rubens

Tonspur Forschung

3 Listeners

Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft - Digitale Hochschulschriften der LMU by Ludwig-Maximilians-Universität München

Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft - Digitale Hochschulschriften der LMU

0 Listeners

MCMP – Mathematical Philosophy (Archive 2011/12) by MCMP Team

MCMP – Mathematical Philosophy (Archive 2011/12)

6 Listeners

LMU Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft - Vorlesungen und Vorträge by Professoren der Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft

LMU Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft - Vorlesungen und Vorträge

0 Listeners

Center for Advanced Studies (CAS) Cutting Edge - SD by Center for Advanced Studies (CAS)

Center for Advanced Studies (CAS) Cutting Edge - SD

0 Listeners

MCMP – Philosophy of Science by MCMP Team

MCMP – Philosophy of Science

1 Listeners

Epistemology and Philosophy of Science: Prof. Dr. Stephan Hartmann – HD by Ludwig-Maximilians-Universität München

Epistemology and Philosophy of Science: Prof. Dr. Stephan Hartmann – HD

1 Listeners

Sommerfeld Lecture Series (ASC) by The Arnold Sommerfeld Center for Theoretical Physics (ASC)

Sommerfeld Lecture Series (ASC)

0 Listeners

MCMP by MCMP Team

MCMP

2 Listeners

Women Thinkers in Antiquity and the Middle Ages - SD by Peter Adamson

Women Thinkers in Antiquity and the Middle Ages - SD

0 Listeners