Cooling Electronic Enclosuresmap :: {skin:’green’, animate:true, width:’200′, volume:0.6, autoplay:false, loop:false, showVolumeLevel:true, showTime:true, showRew:true, downloadable:false, downloadablesecurity:false, id3: false}
—- Transcript ———————-
Audio File: 2014 Feb 12 – Cooling Electronic Enclosures.mp3
Audio Length: 14:12 minutes
Hello. My name is Montie Roland. I’m with Montie Design in Morrisville, North Carolina.
And today, I’d like to spend a few minutes talking about how to develop a strategy for cooling your electronics enclosure.
One of the products that we do a lot of design for is the electronics industry, but in a bunch of different facets. Because when you say electronic enclosure, that could be anything from a computer or related; it could personal electronics; it could be lab equipment; it could even be machinery or process. So, there’s electronic enclosures that go in a variety of locations, from factories to vehicles to aircraft to your pocket. And so it’s important to consider how you’re going to keep that device cool.
Over the past twenty years, we’ve grown to expect more and more from our boxes filled with electronics. And part of that’s because of our capacity to do more with those boxes has gone up dramatically. A good example would be, you know, in the nineties, phones were just that. Cell phones were phones. Before that, they were car phones, because they were physically mounted in your car. If you were born after 1980, you’ve probably never seen a car phone. Back then, car phones were expensive; they were expensive per minute; and they were boxes mounted in your car. Think it more as a radio with an operator. And then what happened was is we got bag phones. And bag phones were . . . well, they were about the size of a laptop, but about double the thickness or triple the thickness. So, you opened the bag, you pull the handset out, you dial. Those were big; they were clunky; all analog. And pretty soon we had handsets that didn’t need a bag. And then pretty soon we had smartphones. My wife will be the first one to tell you that I probably pay way too much attention to my smartphone and keep way on track of things. And the guys who’ve gone camping with me; I had a threat that my nice, new iPhone might meet a horrible death on Troublesome Gap if I didn’t put it in the truck and lock the truck.
So, having said that, we rely on these boxes to do a lot of stuff for us. But, as we rely on them to do more and more, we’re packaging more and more electronics in there and we’re getting them hotter and hotter. So, one of the things that’s a common application for Montie Design, as we design products for clients, is to come up with a strategy for cooling that box. Now, we see a variety of cooling needs. There are some enclosures that we just need to do some very basic things and manage the thermal load in a simple way. You know, we tie PCBs to the outer enclosure; use thermal materials. Then we have other enclosures where we have to vent those somehow. And then we have other ones where either it takes a lot of airflow to cool; or, it takes a lot of analysis to make sure that we can cool the box within whatever limitations we have. Maybe it’s a handheld device but there’s a lot of power coming out of it. So we’ve got to get that power out to the atmosphere, or that thermal energy out; keep the box cool but we also don’t want to burn somebody’s hand, or make it uncomfortable to use.
So, we’ve had a lot of cases like that, so we’ve had a good bit of experience in how to meet these thermal requirements and how to keep the electronics cool so they function efficiently – and function. And there’s a couple ways to go after that. One thing you can do is once we have a computer model, we can do what’s called CFD analysis – Computational Fluid Dynamics. And with that, we actually model the heat transfer in conduction; so, from one part to ano