https://youtu.be/lSKf4C7CnZ8
Proteomics is the large-scale study of proteins, according to Wikipedia. Wikipedia also explains the following about proteomics.
Proteins are vital parts of living organisms, with many functions such as the formation of structural fibers of muscle tissue, enzymatic digestion of food, or synthesis and replication of DNA. In addition, other kinds of proteins include antibodies that protect an organism from infection, and hormones that send important signals throughout the body.
The proteome is the entire set of proteins produced or modified by an organism or system. Proteomics enables the identification of ever-increasing numbers of proteins. This varies with time and distinct requirements, or stresses, that a cell or organism undergoes.
A quick advertisement before I continue on this topic. You can invest in my startup company with as little as US$100, for supporting advancing AI, robotics, biotech, and nuclear-fusion powered outer space tech. Visit Robocentric.com/Investors to invest in my startup.
I've a multidecadal commitment to advancing AI, robotics, biotech, and nuclear-fusion powered outer space tech. To learn more about my cause, check out my books, which are available at Robocentric.com/Checkout, Amazon, Apple Books, Spotify, and other online audiobook retailers. Now, back to the main content.
Proteomics is an interdisciplinary domain that has benefited greatly from the genetic information of various genome projects, including the Human Genome Project. It covers the exploration of proteomes from the overall level of protein composition, structure, and activity, and is an important component of functional genomics.
Proteomics generally denotes the large-scale experimental analysis of proteins and proteomes, but often refers specifically to protein purification and mass spectrometry. Indeed, mass spectrometry is the most powerful method for analysis of proteomes, both in large samples composed of millions of cells and in single cells.
Complexity of the problem in proteomics.
After genomics and transcriptomics, proteomics is the next step in the study of biological systems. It is more complicated than genomics because an organism's genome is more or less constant, whereas proteomes differ from cell to cell and from time to time. Distinct genes are expressed in different cell types, which means that even the basic set of proteins produced in a cell must be identified.
In the past this phenomenon was assessed by RNA analysis, which was found to lack correlation with protein content. It is now known that mRNA is not always translated into protein, and the amount of protein produced for a given amount of mRNA depends on the gene it is transcribed from and on the cell's physiological state. Proteomics confirms the presence of the protein and provides a direct measure of its quantity.
Post-translational modifications. Not only does the translation from mRNA cause differences, but many proteins also are subjected to a wide variety of chemical modifications after translation. The most common and widely studied post-translational modifications include phosphorylation and glycosylation. Many of these post-translational modifications are critical to the protein's function.
Phosphorylation. One such modification is phosphorylation, which happens to many enzymes and structural proteins in the process of cell signaling. The addition of a phosphate to particular amino acids—most commonly serine and threonine mediated by serine-threonine kinases, or more rarely tyrosine mediated by tyrosine kinases—causes a protein to become a target for binding or interacting with a distinct set of other proteins that recognize the phosphorylated domain.
Because protein phosphorylation is one of the most studied protein modifications, many "proteomic" efforts are geared to determining the set of phosphorylated proteins in a particular cell or tissue-type under ...