
Sign up to save your podcasts
Or
Push-a-String-Best-Of.mp3
[Intro]
[Bridge]
[Refrain]
[Bridge]
[Refrain]
[Outro]
Some scientists and theorists have explored the idea that the vibrational nature of strings could have parallels with the vibrational nature of musical notes. String theory hypothesizes that very small “strings” vibrations produce the observed particles and forces of nature similar to a vibrating guitar string and heard in Pythagorean harmonies. If you view a guitar string in slow motion, it moves in a variety of ways at the same time in a similar fashion as the forces in subatomic particles.
“A piano or violin string can resonate or vibrate in various patterns, producing multiple tones simultaneously. These include a fundamental tone and higher overtones (and sometimes lower undertones). The richness and beauty of music arise from the intricate interplay of these harmonics,” explains Edward Witten.
Push-a-String-Best-Of.mp3
[Intro]
[Bridge]
[Refrain]
[Bridge]
[Refrain]
[Outro]
Some scientists and theorists have explored the idea that the vibrational nature of strings could have parallels with the vibrational nature of musical notes. String theory hypothesizes that very small “strings” vibrations produce the observed particles and forces of nature similar to a vibrating guitar string and heard in Pythagorean harmonies. If you view a guitar string in slow motion, it moves in a variety of ways at the same time in a similar fashion as the forces in subatomic particles.
“A piano or violin string can resonate or vibrate in various patterns, producing multiple tones simultaneously. These include a fundamental tone and higher overtones (and sometimes lower undertones). The richness and beauty of music arise from the intricate interplay of these harmonics,” explains Edward Witten.