Quantum Computing 101

Quantum-Centric Supercomputing: Uniting Rivals for Progress | Quantum Computing 101 with Leo


Listen Later

This is your Quantum Computing 101 podcast.

If there’s one thing I love about quantum computing, it’s how it constantly reminds me that progress often comes from combining what seems unmixable. It’s the end of June 2025, and just days ago, a breakthrough landed in my inbox that perfectly captures this fusion spirit—a hybrid solution that’s signaling a new era for both science and industry.

Earlier this week, teams from Caltech, IBM, and Japan’s RIKEN Center for Computational Science stunned the quantum community with what they’re calling quantum-centric supercomputing. Imagine standing at the crossroads of tomorrow, watching quantum and classical worlds shake hands—not as rivals, but as collaborators. Their work tackled the elusive electronic energy levels of a notoriously complex molecule, an iron–sulfur cluster, fundamental to the way nature fixes nitrogen so our crops can grow. Sounds almost poetic, doesn’t it? But what excites me most is the hybrid approach behind it.

Here’s how it worked: The researchers used IBM’s Heron quantum processor to rip through the initial quantum complexity—distilling the problem into a more manageable form. Then, they handed that distilled mathematical challenge off to RIKEN’s Fugaku classical supercomputer, which houses the kind of raw computational horsepower quantum machines just can’t match—yet. Seventy-seven qubits in play, specialized quantum algorithms cleaning the data, and then the classical side finishes the job with precision. It’s like a relay race where the baton is quantum uncertainty and the finish line is chemical insight.

Why does this matter? Because each approach covers the other’s weaknesses. Quantum processors excel at exploring vast, high-dimensional landscapes, where electrons dance and classical bits get overwhelmed. But quantum machines are noisy and small, so their answers need the steady, high-fidelity follow-through of classical computation. Hybrid systems exploit this—quantum for creativity, classical for accuracy—whether it’s simulating molecules or searching for deep patterns in data-scarce environments.

I felt a familiar thrill reading about this. It echoes the Q2B25 Tokyo panel I attended, where experts from AWS, IBM, and NVIDIA all agreed: Pharma, materials science, and quantum-boosted machine learning are already benefiting from hybrid quantum-classical prototypes. AstraZeneca, for instance, is using these blended workflows to simulate chemicals faster than ever, shaving months off timelines that once seemed immovable.

When I walk into our lab, the chilly hum of the quantum fridge and the blinking lights of classical servers remind me—it’s the overlap, the superposition, where magic happens. Today, logic gates and annealers, QPUs and CPUs, work shoulder to shoulder to solve challenges one couldn’t tackle alone.

Quantum computing’s future isn’t a solo act. Like our world—complex, interconnected, and unpredictable—it thrives in partnership. Every time you see technologies working together, remember: true power comes when we embrace complexity, not shy from it.

Thanks for joining me, Leo, on Quantum Computing 101. Got questions or a topic on your mind? Email me anytime at [email protected]. Don’t forget to subscribe, and remember: this has been a Quiet Please Production. For more, check out quiet please dot AI.

For more http://www.quietplease.ai


Get the best deals https://amzn.to/3ODvOta

This content was created in partnership and with the help of Artificial Intelligence AI
...more
View all episodesView all episodes
Download on the App Store

Quantum Computing 101By Inception Point Ai

  • 2.3
  • 2.3
  • 2.3
  • 2.3
  • 2.3

2.3

3 ratings


More shows like Quantum Computing 101

View all
TED Talks Daily by TED

TED Talks Daily

11,037 Listeners

StarTalk Radio by Neil deGrasse Tyson

StarTalk Radio

14,322 Listeners

Odd Lots by Bloomberg

Odd Lots

1,936 Listeners

WSJ Tech News Briefing by The Wall Street Journal

WSJ Tech News Briefing

1,644 Listeners

Uncanny Valley | WIRED by WIRED

Uncanny Valley | WIRED

502 Listeners

Science Friday by Science Friday and WNYC Studios

Science Friday

6,401 Listeners

Heavyweight by Pushkin Industries

Heavyweight

17,744 Listeners

The Daily by The New York Times

The Daily

112,408 Listeners

Stupid Qubit - Quantum Computing for the Clueless by Jim Mortleman & Stuart Houghton

Stupid Qubit - Quantum Computing for the Clueless

13 Listeners

All-In with Chamath, Jason, Sacks & Friedberg by All-In Podcast, LLC

All-In with Chamath, Jason, Sacks & Friedberg

9,927 Listeners

Hard Fork by The New York Times

Hard Fork

5,512 Listeners

Forwards & Backwards: A History of Quantum Computing by Sebastian Hassinger

Forwards & Backwards: A History of Quantum Computing

13 Listeners

The New Quantum Era - innovation in quantum computing, science and technology by Sebastian Hassinger

The New Quantum Era - innovation in quantum computing, science and technology

41 Listeners

The AI Daily Brief: Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief: Artificial Intelligence News and Analysis

610 Listeners

Prof G Markets by Vox Media Podcast Network

Prof G Markets

1,427 Listeners