
Sign up to save your podcasts
Or
Qwen2.5 is a series of large language models (LLMs) with significant improvements over previous models, focusing on efficiency, performance, and long sequence handling. Key architectural advancements include Grouped Query Attention (GQA) for better memory management, Mixture-of-Experts (MoE) for enhanced capacity, and Rotary Positional Embeddings (RoPE) for effective long-sequence modeling. Qwen2.5 uses two-phase pre-training and progressive context length expansion to enhance long-context capabilities, along with techniques like YARN, Dual Chunk Attention (DCA), and sparse attention. It also features an expanded tokenizer and uses SwiGLU activation, QKV bias and RMSNorm for stable training.
5
22 ratings
Qwen2.5 is a series of large language models (LLMs) with significant improvements over previous models, focusing on efficiency, performance, and long sequence handling. Key architectural advancements include Grouped Query Attention (GQA) for better memory management, Mixture-of-Experts (MoE) for enhanced capacity, and Rotary Positional Embeddings (RoPE) for effective long-sequence modeling. Qwen2.5 uses two-phase pre-training and progressive context length expansion to enhance long-context capabilities, along with techniques like YARN, Dual Chunk Attention (DCA), and sparse attention. It also features an expanded tokenizer and uses SwiGLU activation, QKV bias and RMSNorm for stable training.
272 Listeners
441 Listeners
298 Listeners
331 Listeners
217 Listeners
156 Listeners
192 Listeners
9,170 Listeners
409 Listeners
121 Listeners
75 Listeners
479 Listeners
94 Listeners
31 Listeners
43 Listeners