
Sign up to save your podcasts
Or


(The below text version of the notes is for search purposes and convenience. See the PDF version for proper formatting such as bold, italics, etc., and graphics where applicable. Copyright: 2022 Retraice, Inc.)
Re75: Gradients and Partial Derivatives Part 6 (AIMA4e pp. 119-122)
retraice.com
Can we please just place an airport?
Air date: Friday, 9th Dec. 2022, 11:00 PM Eastern/US.
We're focusing on the math and code of AIMA4e^1 right now, December 2022. This is in service of our plan to deep-dive the book from Jan.-Jun., 2023. DISCLAIMER: The below mathematics cannot be trusted; it's a student's attempt, not an expert's.
A guess for our airport^2 location (deliberately off-straight-line). ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
PIC ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Our coordinates and a set:
Fagaras cFa = (14,13) B ucharest cBu = (19,6) 1stairport locationguess x1 = (18,11) The set of cities whose C = {c ,c } closestairportisx1: x1 Fa Bu
<-This y is red because it corresponds to the single-airport version of our objective function. During the livestream I incorrectly said it should be blue.
Calculating the objective function value for our first guess state x:Toil: mundane, repetitive operational work providing no enduring value, which scales linearly with service growth. --Beyer et al. (2016) p. 23
A little inaccuracy sometimes saves tons of explanation. --H. H. Munro, quoted in Knowles (1999) p. 764:7.
our objective 3 fufoncrmtiuonla (for f(x) = f(x1,y1,x2,y2,x3,y3) = \sum \sum (xi- xc)2 + (yi- yc)2 threeairports) i=1 c(-Ci 1 oneairport f(x1) = f(x1 = 18,y1 = 11) = (xi- xc)2 + (yi- yc)2 \sumi=1 c\sum(-Ci 2ndsum unnecessary f(18,11) = \sum (xi- xc)2 + (yi- yc)2 c(-Ci plug-insetalgebra f(18,11) = (x - x)2 + (y - y)2 c\sum(-Cx 1 c 1 c 1 plug-inairportcoordinates f(18,11) = \sum (18- xc)2 + (11 - yc)2 c(-Cx1 exciptieansdalsgeumbraof f(18,11) = (18- xcFa)2 + (11 - ycFa)2 2 2 + (18 - xcBu) + (11 - ycBu) 2 2 plug-incitycoordinates f(18,11) = (18 - 14) + (11 - 13) + (18 - 19)2 + (11 - 6)2 dosubtraction f(18,11) = (4)2 + (- 2)2 + (- 1)2 + (5)2 flatten f(18,11) = (4)2+ (- 2)2 + (- 1)2+(5)2 squares f(18,11) = (16)+(4) + (1)+ (25) f(18,11) = 46
__
References
Beyer, B., Jones, C., Petoff, J., & Murphy, N. (2016). Site Reliability Engineering: How Google Runs Production Systems. O'Reilly Media. ISBN: 978-1491929124. https://sre.google/sre-book/table-of-contents/ Searches: https://www.amazon.com/s?k=9781491929124 https://www.google.com/search?q=isbn+9781491929124 https://lccn.loc.gov/2017304248
Knowles, E. (Ed.) (1999). The Oxford Dictionary of Quotations. Oxford University Press, 5th ed. ISBN: 0198601735. Searches: https://www.amazon.com/s?k=0198601735 https://www.google.com/search?q=isbn+0198601735 https://lccn.loc.gov/99012096
Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach. Pearson, 4th ed. ISBN: 978-0134610993. Searches: https://www.amazon.com/s?k=978-0134610993 https://www.google.com/search?q=isbn+978-0134610993 https://lccn.loc.gov/2019047498
Footnotes
^1 Russell & Norvig (2020).
^2 Russell & Norvig (2020) p. 120.
By Retraice, Inc.(The below text version of the notes is for search purposes and convenience. See the PDF version for proper formatting such as bold, italics, etc., and graphics where applicable. Copyright: 2022 Retraice, Inc.)
Re75: Gradients and Partial Derivatives Part 6 (AIMA4e pp. 119-122)
retraice.com
Can we please just place an airport?
Air date: Friday, 9th Dec. 2022, 11:00 PM Eastern/US.
We're focusing on the math and code of AIMA4e^1 right now, December 2022. This is in service of our plan to deep-dive the book from Jan.-Jun., 2023. DISCLAIMER: The below mathematics cannot be trusted; it's a student's attempt, not an expert's.
A guess for our airport^2 location (deliberately off-straight-line). ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
PIC ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Our coordinates and a set:
Fagaras cFa = (14,13) B ucharest cBu = (19,6) 1stairport locationguess x1 = (18,11) The set of cities whose C = {c ,c } closestairportisx1: x1 Fa Bu
<-This y is red because it corresponds to the single-airport version of our objective function. During the livestream I incorrectly said it should be blue.
Calculating the objective function value for our first guess state x:Toil: mundane, repetitive operational work providing no enduring value, which scales linearly with service growth. --Beyer et al. (2016) p. 23
A little inaccuracy sometimes saves tons of explanation. --H. H. Munro, quoted in Knowles (1999) p. 764:7.
our objective 3 fufoncrmtiuonla (for f(x) = f(x1,y1,x2,y2,x3,y3) = \sum \sum (xi- xc)2 + (yi- yc)2 threeairports) i=1 c(-Ci 1 oneairport f(x1) = f(x1 = 18,y1 = 11) = (xi- xc)2 + (yi- yc)2 \sumi=1 c\sum(-Ci 2ndsum unnecessary f(18,11) = \sum (xi- xc)2 + (yi- yc)2 c(-Ci plug-insetalgebra f(18,11) = (x - x)2 + (y - y)2 c\sum(-Cx 1 c 1 c 1 plug-inairportcoordinates f(18,11) = \sum (18- xc)2 + (11 - yc)2 c(-Cx1 exciptieansdalsgeumbraof f(18,11) = (18- xcFa)2 + (11 - ycFa)2 2 2 + (18 - xcBu) + (11 - ycBu) 2 2 plug-incitycoordinates f(18,11) = (18 - 14) + (11 - 13) + (18 - 19)2 + (11 - 6)2 dosubtraction f(18,11) = (4)2 + (- 2)2 + (- 1)2 + (5)2 flatten f(18,11) = (4)2+ (- 2)2 + (- 1)2+(5)2 squares f(18,11) = (16)+(4) + (1)+ (25) f(18,11) = 46
__
References
Beyer, B., Jones, C., Petoff, J., & Murphy, N. (2016). Site Reliability Engineering: How Google Runs Production Systems. O'Reilly Media. ISBN: 978-1491929124. https://sre.google/sre-book/table-of-contents/ Searches: https://www.amazon.com/s?k=9781491929124 https://www.google.com/search?q=isbn+9781491929124 https://lccn.loc.gov/2017304248
Knowles, E. (Ed.) (1999). The Oxford Dictionary of Quotations. Oxford University Press, 5th ed. ISBN: 0198601735. Searches: https://www.amazon.com/s?k=0198601735 https://www.google.com/search?q=isbn+0198601735 https://lccn.loc.gov/99012096
Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach. Pearson, 4th ed. ISBN: 978-0134610993. Searches: https://www.amazon.com/s?k=978-0134610993 https://www.google.com/search?q=isbn+978-0134610993 https://lccn.loc.gov/2019047498
Footnotes
^1 Russell & Norvig (2020).
^2 Russell & Norvig (2020) p. 120.