
Sign up to save your podcasts
Or


בפרק זה נצלול לעומקו של עולם הלימוד המפוקח ונכיר את השיטות המרכזיות שבהן מחשבים "לומדים" מנתונים כדי לקבל החלטות. נדבר על אלגוריתמים מובילים כמו רגרסיה לינארית, עצי החלטה, Random Forest ו-Gradient Boosting, ונבין כיצד הם פועלים ומהם היתרונות והחסרונות של כל אחד מהם. בנוסף, נסקור את האתגרים המרכזיים בלימוד מפוקח, כמו Overfitting ו-Underfitting, ונציג דרכים להתמודד איתם. הפרק יספק לכם תובנות מעשיות וכלים שיעזרו לבחור באלגוריתם המתאים ביותר לכל בעיה.
By Ram Kedem & Gadi Chrustבפרק זה נצלול לעומקו של עולם הלימוד המפוקח ונכיר את השיטות המרכזיות שבהן מחשבים "לומדים" מנתונים כדי לקבל החלטות. נדבר על אלגוריתמים מובילים כמו רגרסיה לינארית, עצי החלטה, Random Forest ו-Gradient Boosting, ונבין כיצד הם פועלים ומהם היתרונות והחסרונות של כל אחד מהם. בנוסף, נסקור את האתגרים המרכזיים בלימוד מפוקח, כמו Overfitting ו-Underfitting, ונציג דרכים להתמודד איתם. הפרק יספק לכם תובנות מעשיות וכלים שיעזרו לבחור באלגוריתם המתאים ביותר לכל בעיה.