
Sign up to save your podcasts
Or
This week, I'm joined by Katharine Jarmul, Principal Data Scientist at Thoughtworks & author of the the forthcoming book, "Practical Data Privacy: Enhancing Privacy and Security in Data." Katharine began asking questions similar to those of today's ethical machine learning community as a university student working on her undergrad thesis during the war in Iraq. She focused that research on natural language processing and investigated the statistical differences between embedded & non-embedded reporters. In our conversation, we discuss ethical & secure machine learning approaches, threat modeling against adversarial attacks, the importance of distributed data setups, and what Katharine wants data scientists to know about privacy and ethical ML.
Katharine believes that we should never fall victim to a 'techno-solutionist' mindset where we believe that we can solve a deep societal problem simply with tech alone. However, by solving issues around privacy & consent with data collection, we can more easily address the challenges with ethical ML. In fact, ML research is finally beginning to broaden and include the intersections of law, privacy, and ethics. Katharine anticipates that data scientists will embrace PETs that facilitate data sharing in a privacy-preserving way; and, she evangelizes the un-normalization of sending ML data from one company to another.
Topics Covered:
Resources Mentioned:
Guest Info:
Send us a text
Copyright © 2022 - 2024 Principled LLC. All rights reserved.
4.8
1717 ratings
This week, I'm joined by Katharine Jarmul, Principal Data Scientist at Thoughtworks & author of the the forthcoming book, "Practical Data Privacy: Enhancing Privacy and Security in Data." Katharine began asking questions similar to those of today's ethical machine learning community as a university student working on her undergrad thesis during the war in Iraq. She focused that research on natural language processing and investigated the statistical differences between embedded & non-embedded reporters. In our conversation, we discuss ethical & secure machine learning approaches, threat modeling against adversarial attacks, the importance of distributed data setups, and what Katharine wants data scientists to know about privacy and ethical ML.
Katharine believes that we should never fall victim to a 'techno-solutionist' mindset where we believe that we can solve a deep societal problem simply with tech alone. However, by solving issues around privacy & consent with data collection, we can more easily address the challenges with ethical ML. In fact, ML research is finally beginning to broaden and include the intersections of law, privacy, and ethics. Katharine anticipates that data scientists will embrace PETs that facilitate data sharing in a privacy-preserving way; and, she evangelizes the un-normalization of sending ML data from one company to another.
Topics Covered:
Resources Mentioned:
Guest Info:
Send us a text
Copyright © 2022 - 2024 Principled LLC. All rights reserved.