
Sign up to save your podcasts
Or
In this episode we start with a little correction needed for the episode on the supremum of sets. Then we embark on the cruise to a special type of sequences: series. We define this notion provide the most prominent examples (geometric and harmonic) and some convergence tests. Among these the most important in turn are the comparison test, the ratio test and the root test. As an application of convergent series, we can show that any real number admits a decimal expression. (license of picture under https://commons.wikimedia.org/wiki/File:Meta-image-netflix-symbol-black.png)
In this episode we start with a little correction needed for the episode on the supremum of sets. Then we embark on the cruise to a special type of sequences: series. We define this notion provide the most prominent examples (geometric and harmonic) and some convergence tests. Among these the most important in turn are the comparison test, the ratio test and the root test. As an application of convergent series, we can show that any real number admits a decimal expression. (license of picture under https://commons.wikimedia.org/wiki/File:Meta-image-netflix-symbol-black.png)