sci_videos

Sharp X-ray images despite imperfect lenses


Listen Later

Explainer video / Erklärvideo:

Physical Review Letters, Jakob Soltau, Markus Osterhoff, and Tim Salditt:
Coherent Diffractive Imaging with Diffractive Optics
PRL 128, 223901 (2022)

(Deutsche Fassung weiter unten)

X-rays make it possible to explore inside human bodies or peer inside objects. The technology used to illuminate the detail in microscopically small structures is the same as that used in familiar situations – such as medical imaging at a clinic or luggage control at the airport. X-ray microscopy enables scientists to study the three-dimensional structure of materials, organisms or tissues without cutting and damaging the sample. Unfortunately, the performance of X-ray microscopy is limited by the difficulties in producing the perfect lens. A team from the Institute for X-ray Physics at the University of Göttingen has now shown that, despite the manufacturing limitations of lenses, a much higher image quality and sharpness than ever before can be achieved using a special experimental arrangement and numerical image reconstruction downstream: an algorithm compensates for the deficits of the lenses. The results were published in the journal Physical Review Letters.

The scientists used a lens consisting of finely structured layers of a few atomic layers deposited from concentric rings on a thin wire. The lens, with a diameter of less than one fiftieth of a millimetre, was then adjusted between the object to be imaged and an X-ray camera in the extremely bright and focussed X-ray beam at the German Electron Synchrotron (DESY) in Hamburg. On the camera, the researchers received three different types of signal that together provided complete information about the structure of the unknown object, even if the objects absorbed little or no X-ray radiation. All that remained was to find a suitable algorithm to decode the information and reconstruct it into a sharp image. For this solution to work, it was crucial to precisely measure the lens itself, which was far from perfect, and to completely dispense with the assumption that it could be ideal. In their first application, the researchers investigated semiconductor nanowires, which are of particular interest as new materials for photovoltaics for instance.

"It was only through the combination of lenses and numerical image reconstruction that we could achieve the high image quality," explains first author Dr Jakob Soltau. "This is how we compensate for the fact that it is impossible to produce X-ray lenses with the required fine structure and quality," adds Dr Markus Osterhoff. "Due to these difficulties, many researchers had already turned away from using X-ray microscopy with lenses and instead have tried to replace the lenses completely with algorithms. However, by using both lenses and algorithms together, our approach now combines the best of both worlds," concludes Professor Tim Salditt. A particular advantage of the new method is that the object does not have to be scanned, meaning very fast microscopic processes in materials can also be "filmed" in motion. Such experiments are planned as the next step at DESY and at the European X-ray laser XFEL in Hamburg.

Das Innere von Körpern und Objekten lässt sich durch Röntgenstrahlung in Detail ausleuchten und erkunden. Was im Alltag aus der medizinischen Bildgebung oder der Gepäckkontrolle am Flughafen bekannt ist, funktioniert auch für mikroskopisch kleine Strukturen, wie sie in der Materialwissenschaft oder der Biologie erforscht werden. Möchte man zum Beispiel den dreidimensionalen Aufbau von Materialien, Organismen oder Geweben untersuchen, ohne die Probe zu zerschneiden, kann man die Röntgenmikroskopie nutzen. Leider ist die Leistungsfähigkeit der Röntgenmikroskopie durch die Schwierigkeiten bei der Linsenherstellung limitiert. Ein Team des Instituts für Röntgenphysik der Universität Göttingen hat nun gezeigt, dass sich trotz der Herstellungsgrenzen von Röntgenlinsen bei einer bestimmten experimentellen Anordnung und nachgeschalteter numerischer Bildrekonstruktion eine sehr viel höhere Bildqualität und Schärfe erreichen lassen, als bislang bekannt: Ein Algorithmus kompensiert dabei die Defizite der Linsen. Die Ergebnisse sind in der Fachzeitschrift Physical Review Letters erschienen.

Die Wissenschaftler verwendeten eine Objektivlinse, die aus fein strukturierten Schichten von wenigen Atomlagen bestand und aus konzentrischen Ringen auf einem dünnen Draht abgeschieden wurde. Die Linse mit einem Durchmesser von weniger als einem Fünfzigstel Millimeter wurde dann im hochbrillanten Röntgenstrahl am Deutschen Elektronensynchrotron (DESY) in Hamburg zwischen dem abzubildenden Objekt und einer Röntgenkamera justiert. Auf der Kamera erhielten die Forscher drei unterschiedliche Arten von Signalen, die zusammen die vollständigen Informationen über die Struktur des unbekannten Objektes lieferten, selbst wenn die Objekte die Röntgenstrahlung nur wenig oder gar nicht absorbierten. Es musste nur noch ein geeigneter Algorithmus gefunden werden, mit dem die kodierte Information entschlüsselt und zu einem scharfen Bild rekonstruiert werden konnte. Für die Lösung war es entscheidend, die keineswegs perfekte Linse selbst genauestens zu vermessen und dabei ganz auf idealisierende Annahmen zu verzichten. In ihrer ersten Anwendung untersuchten die Forscher Halbleiter-Nanodrähte, die als mögliche neue Materialien für die Photovoltaik von Interesse sind.

„Erst durch die Kombination aus Linsen und numerischen Bildrekonstruktion erreichen wir die hohe Bildqualität“, erklärt Erstautor Dr. Jakob Soltau. „Damit kompensieren wir die Tatsache, dass Röntgenlinsen mit der benötigten Feinstruktur und Qualität nicht hergestellt werden können“, ergänzt Dr. Markus Osterhoff. „Zwischenzeitlich hatten sich viele Forscher daher schon von der Röntgenmikroskopie mit Linsen abgewendet und stattdessen versucht, die Linsen vollständig durch Algorithmen zu ersetzen. Durch Linsen und Algorithmen lässt sich nun mit unserem Ansatz das Beste von zwei Welten kombinieren“, schließt Prof. Dr. Tim Salditt. Ein besonderer Vorteil der neuen Methode besteht darin, dass das Objekt nicht abgerastert werden muss und sich daher auch sehr schnelle mikroskopische Prozesse in Materialien „filmen“ lassen. Solche Experimente sind als nächster Schritt am DESY und am europäischen Röntgenlaser in Hamburg geplant.

https://www.uni-goettingen.de/de/25996.html?id=6699 / https://www.uni-goettingen.de/en/25996.html?id=6700

...more
View all episodesView all episodes
Download on the App Store

sci_videosBy