
Sign up to save your podcasts
Or


皆さん、こんにちは!今回は、AI(人工知能)開発に役立つ新しいWeb検索API、「Parallel Search」が発表されたというニュースをお届けします。特にAIエージェントを作るエンジニアさんにとっては、とても興味深い内容ですよ。
これまで主流だったWeb検索エンジンは、人間がキーワードで検索し、表示されたリンクをクリックして情報を見つけることを前提に作られていました。しかし、AIエージェントは少し違います。彼らは「何をすべきか」という意図(目的)を理解し、そのタスクを効率的に達成するための「情報(トークンと呼ばれるテキストの最小単位)」を求めているのです。AIにとって最適なのは、クリック率が高いページではなく、モデルが思考・推論するために最も関連性の高い情報が詰まった部分になります。
Parallel Search APIは、このAIのニーズに特化してゼロから設計されました。主な特徴は以下の通りです。
これらの工夫により、AIエージェントはより少ない検索回数で、高い精度で必要な情報を手に入れられ、結果としてAPI呼び出しのコスト削減や処理速度の向上に繋がります。
実際に様々なベンチマークテストでは、Parallel Search APIは他の既存サービスと比較して、特に複数の情報源を組み合わせたり、深い理解が必要な「複雑な検索」において、約2倍の精度と約半分のコストで優れたパフォーマンスを発揮しています。シンプルな検索でも、業界トップレベルの精度を維持しつつ、最も低いコストを実現していることが示されています。
この高い性能は、Parallel社が過去2年間で独自のWebインデックスを構築し、Webクローリングからデータのインデックス化、そしてAIに最適なランキング付けまで、検索の全工程を自社で垂直統合しているからこそ実現できたものです。
AIエージェントが「コンテキストウィンドウ」(LLMが一度に処理できる情報の範囲)に、いかに質の高い情報を取り込むかが、タスク達成の鍵となります。Parallel Search APIは、この課題を解決し、AIエージェントの能力を最大限に引き出す強力なツールとなるでしょう。もし皆さんがAIエージェントの開発に携わる機会があれば、ぜひこの新しい検索APIを試してみてはいかがでしょうか。
引用元: https://parallel.ai/blog/introducing-parallel-search
この記事は、コーディング経験のないビジネス出身プロダクトマネージャー(PM)が、AIエージェント開発に挑戦し、その過程で得た実践的な学びを共有しています。
筆者が開発したのは、自社サービス「バクラク申請・経費精算」のお客様の社内運用ルールを、システムで使えるルールに自動翻訳し、AIによる申請レビューが可能か評価するAIエージェントです。これにより、お客様と社内担当者の設定作業負担を減らすことを目指しました。
このエージェントを実用的なものにするため、以下の3つの工夫を凝らしています。
開発を通じて、筆者は以下の重要な学びを得たと述べています。
非エンジニアがAIエージェントを自作するには、Pythonの基礎やAI関連ライブラリの知識など、多くのスキルが求められ、一人で完遂するのは非常に困難です。しかし、社内のエンジニアからのサポートがあれば、実践を通じてPMもAI技術への理解を深めることができます。PMとエンジニアが協力してAIを活用することで、プロダクトの価値提供スピードを加速できる、というメッセージで締めくくられています。
引用元: https://tech.layerx.co.jp/entry/2025/11/06/080000
この記事は、AIエージェントをより効率的に動かすための新しい技術「コード実行」について解説しています。特に、AIエージェントが外部システムと連携するための標準プロトコル「MCP(Model Context Protocol)」利用時の課題解決に焦点を当てています。
新人エンジニアの皆さん、AIエージェントはGoogle DriveやSalesforceのような様々なツールと連携して複雑なタスクをこなしますが、その連携方法には工夫が必要です。
MCPの課題:AIの情報処理負担
コード実行による解決策:効率的な連携
このアプローチには、以下のようなメリットがあります。
考慮すべき点
まとめ
引用元: https://www.anthropic.com/engineering/code-execution-with-mcp
スニーカーダンクに投稿された記事で、ユーザー名「中卒チック症ずんだもん」さんが、夜のハンマーヘッドが「くっそ寒い」とカジュアルに注意喚起しています。親しみやすいずんだもんの口調で、これからハンマーヘッドを訪れる人に「各位気を付けるように」と呼びかける内容は、新人エンジニアの方々が少し疲れた時にクスッと笑える、心温まる一言です。寒い日も油断せず、体調管理に気をつけましょう。
引用元: https://snkrdunk.com/post/958810/
VOICEVOX:ずんだもん
By 株式会社ずんだもん技術室AI放送局皆さん、こんにちは!今回は、AI(人工知能)開発に役立つ新しいWeb検索API、「Parallel Search」が発表されたというニュースをお届けします。特にAIエージェントを作るエンジニアさんにとっては、とても興味深い内容ですよ。
これまで主流だったWeb検索エンジンは、人間がキーワードで検索し、表示されたリンクをクリックして情報を見つけることを前提に作られていました。しかし、AIエージェントは少し違います。彼らは「何をすべきか」という意図(目的)を理解し、そのタスクを効率的に達成するための「情報(トークンと呼ばれるテキストの最小単位)」を求めているのです。AIにとって最適なのは、クリック率が高いページではなく、モデルが思考・推論するために最も関連性の高い情報が詰まった部分になります。
Parallel Search APIは、このAIのニーズに特化してゼロから設計されました。主な特徴は以下の通りです。
これらの工夫により、AIエージェントはより少ない検索回数で、高い精度で必要な情報を手に入れられ、結果としてAPI呼び出しのコスト削減や処理速度の向上に繋がります。
実際に様々なベンチマークテストでは、Parallel Search APIは他の既存サービスと比較して、特に複数の情報源を組み合わせたり、深い理解が必要な「複雑な検索」において、約2倍の精度と約半分のコストで優れたパフォーマンスを発揮しています。シンプルな検索でも、業界トップレベルの精度を維持しつつ、最も低いコストを実現していることが示されています。
この高い性能は、Parallel社が過去2年間で独自のWebインデックスを構築し、Webクローリングからデータのインデックス化、そしてAIに最適なランキング付けまで、検索の全工程を自社で垂直統合しているからこそ実現できたものです。
AIエージェントが「コンテキストウィンドウ」(LLMが一度に処理できる情報の範囲)に、いかに質の高い情報を取り込むかが、タスク達成の鍵となります。Parallel Search APIは、この課題を解決し、AIエージェントの能力を最大限に引き出す強力なツールとなるでしょう。もし皆さんがAIエージェントの開発に携わる機会があれば、ぜひこの新しい検索APIを試してみてはいかがでしょうか。
引用元: https://parallel.ai/blog/introducing-parallel-search
この記事は、コーディング経験のないビジネス出身プロダクトマネージャー(PM)が、AIエージェント開発に挑戦し、その過程で得た実践的な学びを共有しています。
筆者が開発したのは、自社サービス「バクラク申請・経費精算」のお客様の社内運用ルールを、システムで使えるルールに自動翻訳し、AIによる申請レビューが可能か評価するAIエージェントです。これにより、お客様と社内担当者の設定作業負担を減らすことを目指しました。
このエージェントを実用的なものにするため、以下の3つの工夫を凝らしています。
開発を通じて、筆者は以下の重要な学びを得たと述べています。
非エンジニアがAIエージェントを自作するには、Pythonの基礎やAI関連ライブラリの知識など、多くのスキルが求められ、一人で完遂するのは非常に困難です。しかし、社内のエンジニアからのサポートがあれば、実践を通じてPMもAI技術への理解を深めることができます。PMとエンジニアが協力してAIを活用することで、プロダクトの価値提供スピードを加速できる、というメッセージで締めくくられています。
引用元: https://tech.layerx.co.jp/entry/2025/11/06/080000
この記事は、AIエージェントをより効率的に動かすための新しい技術「コード実行」について解説しています。特に、AIエージェントが外部システムと連携するための標準プロトコル「MCP(Model Context Protocol)」利用時の課題解決に焦点を当てています。
新人エンジニアの皆さん、AIエージェントはGoogle DriveやSalesforceのような様々なツールと連携して複雑なタスクをこなしますが、その連携方法には工夫が必要です。
MCPの課題:AIの情報処理負担
コード実行による解決策:効率的な連携
このアプローチには、以下のようなメリットがあります。
考慮すべき点
まとめ
引用元: https://www.anthropic.com/engineering/code-execution-with-mcp
スニーカーダンクに投稿された記事で、ユーザー名「中卒チック症ずんだもん」さんが、夜のハンマーヘッドが「くっそ寒い」とカジュアルに注意喚起しています。親しみやすいずんだもんの口調で、これからハンマーヘッドを訪れる人に「各位気を付けるように」と呼びかける内容は、新人エンジニアの方々が少し疲れた時にクスッと笑える、心温まる一言です。寒い日も油断せず、体調管理に気をつけましょう。
引用元: https://snkrdunk.com/post/958810/
VOICEVOX:ずんだもん