Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02

Spatial Database Support for Virtual Engineering


Listen Later

The development, design, manufacturing and maintenance of modern engineering products is a very expensive and complex task. Shorter product cycles and a greater diversity of models are becoming decisive competitive factors in the hard-fought automobile and plane market. In order to support engineers to create complex products when being pressed for time, systems are required which answer collision and similarity queries effectively and efficiently. In order to achieve industrial strength, the required specialized functionality has to be integrated into fully-fledged database systems, so that fundamental services of these systems can be fully reused, including transactions, concurrency control and recovery.
This thesis aims at the development of theoretical sound and practical realizable algorithms which effectively and efficiently detect colliding and similar complex spatial objects.
After a short introductory Part I, we look in Part II at different spatial index structures and discuss their integrability into object-relational database systems. Based on this discussion, we present two generic approaches for accelerating collision queries. The first approach exploits available statistical information in order to accelerate the query process. The second approach is based on a cost-based decompositioning of complex spatial objects. In a broad experimental evaluation based on real-world test data sets, we demonstrate the usefulness of the presented techniques which allow interactive query response times even for large data sets of complex objects.
In Part III of the thesis, we discuss several similarity models for spatial objects. We show by means of a new evaluation method that data-partitioning similarity models yield more meaningful results than space-partitioning similarity models. We introduce a very effective similarity model which is based on a new paradigm in similarity search, namely the use of vector set represented objects. In order to guarantee efficient query processing, suitable filters are introduced for accelerating similarity queries on complex spatial objects. Based on clustering and the introduced similarity models we present an industrial prototype which helps the user to navigate through massive data sets.
...more
View all episodesView all episodes
Download on the App Store

Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02By Ludwig-Maximilians-Universität München

  • 5
  • 5
  • 5
  • 5
  • 5

5

1 ratings


More shows like Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02

View all
Theoretical Physics Schools (ASC) by The Arnold Sommerfeld Center for Theoretical Physics (ASC)

Theoretical Physics Schools (ASC)

2 Listeners

Katholisch-Theologische Fakultät - Digitale Hochschulschriften der LMU by Ludwig-Maximilians-Universität München

Katholisch-Theologische Fakultät - Digitale Hochschulschriften der LMU

0 Listeners

MCMP – Mathematical Philosophy (Archive 2011/12) by MCMP Team

MCMP – Mathematical Philosophy (Archive 2011/12)

6 Listeners

Hegel lectures by Robert Brandom, LMU Munich by Robert Brandom, Axel Hutter

Hegel lectures by Robert Brandom, LMU Munich

6 Listeners

John Lennox - Hat die Wissenschaft Gott begraben? by Professor John C. Lennox, University of Oxford

John Lennox - Hat die Wissenschaft Gott begraben?

3 Listeners

MCMP – Philosophy of Science by MCMP Team

MCMP – Philosophy of Science

2 Listeners

MCMP – Philosophy of Mathematics by MCMP Team

MCMP – Philosophy of Mathematics

2 Listeners

Epistemology and Philosophy of Science: Prof. Dr. Stephan Hartmann – HD by Ludwig-Maximilians-Universität München

Epistemology and Philosophy of Science: Prof. Dr. Stephan Hartmann – HD

1 Listeners

MCMP – Philosophy of Physics by MCMP Team

MCMP – Philosophy of Physics

4 Listeners

Center for Advanced Studies (CAS) Research Focus Evolutionary Biology (LMU) - HD by Center for Advanced Studies (CAS)

Center for Advanced Studies (CAS) Research Focus Evolutionary Biology (LMU) - HD

0 Listeners