Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02

Statistical Diffusion Tensor Imaging


Listen Later

Magnetic resonance diffusion tensor imaging (DTI) allows to infere the ultrastructure of living tissue. In brain mapping, neural fiber trajectories can be identified by exploiting the anisotropy of diffusion processes. Manifold statistical methods may be linked into the comprehensive processing chain that is spanned between DTI raw images and the reliable visualization of fibers. In this work, a space varying coefficients model (SVCM) using penalized B-splines was developed to integrate diffusion tensor estimation, regularization and interpolation into a unified framework. The implementation challenges originating in multiple 3d space varying coefficient surfaces and the large dimensions of realistic datasets were met by incorporating matrix sparsity and efficient model approximation. Superiority of B-spline based SVCM to the standard approach was demonstrable from simulation studies in terms of the precision and accuracy of the individual tensor elements. The integration with a probabilistic fiber tractography algorithm and application on real brain data revealed that the unified approach is at least equivalent to the serial application of voxelwise estimation, smoothing and interpolation. From the error analysis using boxplots and visual inspection the conclusion was drawn that both the standard approach and the B-spline based SVCM may suffer from low local adaptivity. Therefore, wavelet basis functions were employed for filtering diffusion tensor fields. While excellent local smoothing was indeed achieved by combining voxelwise tensor estimation with wavelet filtering, no immediate improvement was gained for fiber tracking. However, the thresholding strategy needs to be refined and the proposed model of an incorporation of wavelets into an SVCM needs to be implemented to finally assess their utility for DTI data processing.
In summary, an SVCM with specific consideration of the demands of human brain DTI data was developed and implemented, eventually representing a unified postprocessing framework. This represents an experimental and statistical platform to further improve the reliability of tractography.
...more
View all episodesView all episodes
Download on the App Store

Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02By Ludwig-Maximilians-Universität München

  • 5
  • 5
  • 5
  • 5
  • 5

5

1 ratings


More shows like Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02

View all
Tonspur Forschung by Annik Rubens

Tonspur Forschung

3 Listeners

Einführung in die Ethnologie by Prof. Dr. Frank Heidemann

Einführung in die Ethnologie

0 Listeners

Theoretical Physics Schools (ASC) by The Arnold Sommerfeld Center for Theoretical Physics (ASC)

Theoretical Physics Schools (ASC)

2 Listeners

MCMP – Mathematical Philosophy (Archive 2011/12) by MCMP Team

MCMP – Mathematical Philosophy (Archive 2011/12)

6 Listeners

Hegel lectures by Robert Brandom, LMU Munich by Robert Brandom, Axel Hutter

Hegel lectures by Robert Brandom, LMU Munich

6 Listeners

MCMP – Metaphysics and Philosophy of Language by MCMP Team

MCMP – Metaphysics and Philosophy of Language

2 Listeners

MCMP – Philosophy of Science by MCMP Team

MCMP – Philosophy of Science

1 Listeners

Sommerfeld Lecture Series (ASC) by The Arnold Sommerfeld Center for Theoretical Physics (ASC)

Sommerfeld Lecture Series (ASC)

0 Listeners

MCMP by MCMP Team

MCMP

2 Listeners

Women Thinkers in Antiquity and the Middle Ages - SD by Peter Adamson

Women Thinkers in Antiquity and the Middle Ages - SD

0 Listeners