Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02

Synchronization Inspired Data Mining


Listen Later

Advances of modern technologies produce huge amounts of data in various fields, increasing the need for efficient and effective data mining tools to uncover the information contained implicitly in the data. This thesis mainly aims to propose innovative and solid algorithms for data mining from a novel perspective: synchronization.
Synchronization is a prevalent phenomenon in nature that a group of events spontaneously come into co-occurrence with a common rhythm through mutual interactions. The mechanism of synchronization allows controlling of complex processes by simple operations based on interactions between objects.
The first main part of this thesis focuses on developing the innovative algorithms for data mining. Inspired by the concept of synchronization, this thesis presents Sync (Clustering by Synchronization), a novel approach to clustering. In combination with the Minimum Description Length principle (MDL), it allows discovering the intrinsic clusters without any data distribution assumptions and parameters setting. In addition, relying on the dierent dynamic behaviors of objects during the process towards synchronization,the algorithm SOD (Synchronization-based Outlier Detection) is further proposed. The outlier objects can be naturally flagged by the denition of Local Synchronization Factor (LSF). To cure the curse of dimensionality in clustering,a subspace clustering algorithm ORSC is introduced which automatically detects clusters in subspaces of the original feature space. This approach proposes a weighted local interaction model to ensure all objects in a common cluster, which accommodate in arbitrarily oriented subspace, naturally move together. In order to reveal the underlying patterns in graphs, a graph partitioning approach RSGC (Robust Synchronization-based Graph Clustering) is presented. The key philosophy of RSGC is to consider graph clustering as a dynamic process towards synchronization. Inherited from the powerful concept of synchronization, RSGC shows several desirable properties that
don't exist in other competitive methods. For all presented algorithms, their efficiency and eectiveness are thoroughly analyzed. The benets over traditional approaches are further demonstrated by evaluating them on synthetic as well as real-world data sets.
Not only the theory research on novel data mining algorithms, the second main part of the thesis focuses on brain network analysis based on Diusion Tensor Images (DTI). A new framework for automated white matter tracts clustering is rst proposed to identify the meaningful ber bundles in the
Human Brain by combining ideas from time series mining with density-based clustering. Subsequently, the enhancement and variation of this approach is discussed allowing for a more robust, efficient, or eective way to find hierarchies of ber bundles. Based on the structural connectivity network, an automated prediction framework is proposed to analyze and understand the abnormal patterns in patients of Alzheimer's Disease.
...more
View all episodesView all episodes
Download on the App Store

Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02By Ludwig-Maximilians-Universität München

  • 5
  • 5
  • 5
  • 5
  • 5

5

1 ratings


More shows like Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02

View all
Theoretical Physics Schools (ASC) by The Arnold Sommerfeld Center for Theoretical Physics (ASC)

Theoretical Physics Schools (ASC)

2 Listeners

Katholisch-Theologische Fakultät - Digitale Hochschulschriften der LMU by Ludwig-Maximilians-Universität München

Katholisch-Theologische Fakultät - Digitale Hochschulschriften der LMU

0 Listeners

MCMP – Mathematical Philosophy (Archive 2011/12) by MCMP Team

MCMP – Mathematical Philosophy (Archive 2011/12)

6 Listeners

Hegel lectures by Robert Brandom, LMU Munich by Robert Brandom, Axel Hutter

Hegel lectures by Robert Brandom, LMU Munich

6 Listeners

John Lennox - Hat die Wissenschaft Gott begraben? by Professor John C. Lennox, University of Oxford

John Lennox - Hat die Wissenschaft Gott begraben?

3 Listeners

MCMP – Philosophy of Science by MCMP Team

MCMP – Philosophy of Science

1 Listeners

MCMP – Philosophy of Mathematics by MCMP Team

MCMP – Philosophy of Mathematics

2 Listeners

Epistemology and Philosophy of Science: Prof. Dr. Stephan Hartmann – HD by Ludwig-Maximilians-Universität München

Epistemology and Philosophy of Science: Prof. Dr. Stephan Hartmann – HD

1 Listeners

MCMP – Philosophy of Physics by MCMP Team

MCMP – Philosophy of Physics

3 Listeners

Center for Advanced Studies (CAS) Research Focus Evolutionary Biology (LMU) - HD by Center for Advanced Studies (CAS)

Center for Advanced Studies (CAS) Research Focus Evolutionary Biology (LMU) - HD

0 Listeners