Papers Read on AI

The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants


Listen Later

We present Belebele, a multiple-choice machine reading comprehension (MRC) dataset spanning 122 language variants. Significantly expanding the language coverage of natural language understanding (NLU) benchmarks, this dataset enables the evaluation of text models in high-, medium-, and low-resource languages. Each question is based on a short passage from the Flores-200 dataset and has four multiple-choice answers. The questions were carefully curated to discriminate between models with different levels of general language comprehension. The English dataset on its own proves difficult enough to challenge state-of-the-art language models. Being fully parallel, this dataset enables direct comparison of model performance across all languages. We use this dataset to evaluate the capabilities of multilingual masked language models (MLMs) and large language models (LLMs). We present extensive results and find that despite significant cross-lingual transfer in English-centric LLMs, much smaller MLMs pretrained on balanced multilingual data still understand far more languages. We also observe that larger vocabulary size and conscious vocabulary construction correlate with better performance on low-resource languages. Overall, Belebele opens up new avenues for evaluating and analyzing the multilingual capabilities of NLP systems.

2023: Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel Artetxe, Satya Narayan Shukla, Don Husa, Naman Goyal, Abhinandan Krishnan, Luke Zettlemoyer, Madian Khabsa



https://arxiv.org/pdf/2308.16884v1.pdf
...more
View all episodesView all episodes
Download on the App Store

Papers Read on AIBy Rob

  • 3.7
  • 3.7
  • 3.7
  • 3.7
  • 3.7

3.7

3 ratings


More shows like Papers Read on AI

View all
MLOps.community by Demetrios

MLOps.community

23 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

75 Listeners