
Sign up to save your podcasts
Or
In this episode of Intel on AI host Amir Khosrowshahi and Yoshua Bengio talk about structuring future computers on the underlying physics and biology of human intelligence. Yoshua is a professor at the Department of Computer Science and Operations Research at the Université de Montréal and scientific director of the Montreal Institute for Learning Algorithms (Mila). In 2018 Yoshua received the ACM A.M. Turing Award with Geoffrey Hinton and Yann LeCun.
In the episode, Yoshua and Amir discuss causal representation learning and out-of-distribution generalization, the limitations of modern hardware, and why current models are exponentially increasing amounts of data and compute only to find slight improvements. Yoshua also goes into detail about equilibrium propagation—a learning algorithm that bridges machine learning and neuroscience by computing gradients closely matching those of backpropagation. Yoshua and Amir close the episode by talking about academic publishing, sharing information, and the responsibility to make sure artificial intelligence (AI) will not be misused in society, before touching briefly on some of the projects Intel and Mila are collaborating on, such as using parallel computing for the discovery of synthesizable molecules.
Academic research discussed in the podcast episode:
4.9
1313 ratings
In this episode of Intel on AI host Amir Khosrowshahi and Yoshua Bengio talk about structuring future computers on the underlying physics and biology of human intelligence. Yoshua is a professor at the Department of Computer Science and Operations Research at the Université de Montréal and scientific director of the Montreal Institute for Learning Algorithms (Mila). In 2018 Yoshua received the ACM A.M. Turing Award with Geoffrey Hinton and Yann LeCun.
In the episode, Yoshua and Amir discuss causal representation learning and out-of-distribution generalization, the limitations of modern hardware, and why current models are exponentially increasing amounts of data and compute only to find slight improvements. Yoshua also goes into detail about equilibrium propagation—a learning algorithm that bridges machine learning and neuroscience by computing gradients closely matching those of backpropagation. Yoshua and Amir close the episode by talking about academic publishing, sharing information, and the responsibility to make sure artificial intelligence (AI) will not be misused in society, before touching briefly on some of the projects Intel and Mila are collaborating on, such as using parallel computing for the discovery of synthesizable molecules.
Academic research discussed in the podcast episode:
1,646 Listeners
161 Listeners
26,400 Listeners
323 Listeners
111,438 Listeners
657 Listeners
56,016 Listeners
317 Listeners
190 Listeners
1,836 Listeners
5,923 Listeners
9,045 Listeners
1,542 Listeners
199 Listeners
458 Listeners