Modellansatz

Topologieoptimierung


Listen Later

Margarita An hat ihre Masterarbeit im Rahmen einer Zusammenarbeit mit Dassault Systèms Deutschland (mit Sitz im Technologiepark in Karlsruhe) geschrieben. Sie hat Technomathematik mit dem technischen Nebenfach Maschinenbau studiert. Deshalb war sie daran interessiert für ihre Abschlußarbeit eine mathematische Fragestellung für eine möglichst konkretes Problem im Maschinenbau zu finden.

Nun hat sie eine neue Optimierungsstrategie entwickelt und implementiert, die Eulersche Formoptimierung mit Topologieoptimierung kombiniert. Formoptimierung bedeutet, ein Modell in seiner Form so zu verändern, dass ein bestimmtes Zielfunktional - z.B. die Spannungsbilanz im Körper - minimal wird. De Facto bedeutet das, dass die Oberfläche des Körpers bzw. sein Rand im Optimierungsprozess verändert wird. Eulersch heißt hierbei, dass die Geometrie des Randes mit Hilfe von Kontrollpunkten auf einem festen Netz definiert wird, während sich in der Lagrange-Formulierung das Netz während des Optimierungsprozesses verändert. Letzteres führt jedoch zu einer Abhängigkeit aller Algorithmen und Rechnungen von den Rechengitterknotenkoordinaten.

Hierfür dienen insbesondere regelmäßige Finite Elemente (kurz FE) Netze aus Quadraten bzw. Würfeln als Rechengitter. Die Kontrollpunkte sind dann die Designvariablen. Die Idee ist es, die Beschreibung des Randes vom FE-Netz zu trennen, d.h. die Oberfläche kann sich durch das Rechengitter "bewegen", ohne es zu beachten. Anstatt im Rechengitter Knoten mit dem Rand zu verändern, wird in dem betroffenen Teilgebiet des Modells ein Pseudodichtefeld wie von Topologieoptimierung bekannt, bestimmt. Dementsprechend kann die topologische Sensitivität mit einem Topologieoptimierungs-Werkzeug (z.B. Tosca Structure oder anderer CAD-Software) berechnet werden. Entscheidend dafür dass das gut funktioniert ist, dass die Abbildungsfunktion, welche topologische Sensitivität in Formoptimierungs-Sensitivität transformieren kann, linear ist.

Falls sich während des Optimierungsprozesses die FE-Netze ändern dürfen, vereinfacht das die Optimierung erheblich - vor allem die Sensitivitäts-Analyse. Auf der anderen Seite, ist die Beschreibung der Geometrie in Bezug auf die Randkurven oder Oberflächen natürlich etwas komplizierter. Wie die in der Arbeit vorgestellten Beispiele zeigen, ermöglicht der modifizierte Ansatz für Eulersche Formoptimierung jedoch durchaus optimale Lösungen ohne Gitter-Verformungen. Es gibt sogar ein recht einfaches Beispiel dafür, dass der Lagrange-Ansatz versagt, während der Eulersche Ansatz schnell die gewünschte Lösung findet.

Literatur und weiterführende Informationen
  • K. Bandara, T. Rüberg & F. Cirak Shape: Optimisation with Multiresolution Subdivision Surfaces and Immersed Finite Elements Computer, Methods in Applied Mechanics and Engineering 300, 510-539, 2016.
  • N.H. Kim & Y. Chang: Eulerian Shape Design Sensitivity Analysis and Optimization with a Fixed Grid Computer Method in Applied Mechanics and Engineering 194, 3291-3314, 2005.
  • Kimmich: Strukturoptimierung und Sensibilitätsanalyse mit finiten Elementen Berich Nr. 12, Institut für Baustatik der Universität Stuttgart, 1990.
Podcasts
  • P. Allinger und N. Stockelkamp: Strukturoptimierung, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 053, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015.
...more
View all episodesView all episodes
Download on the App Store

ModellansatzBy Gudrun Thäter, Sebastian Ritterbusch


More shows like Modellansatz

View all
Bits und so by Undsoversum GmbH

Bits und so

23 Listeners

IQ - Wissenschaft und Forschung by Bayerischer Rundfunk

IQ - Wissenschaft und Forschung

46 Listeners

Welt der Physik | Podcast by Welt der Physik

Welt der Physik | Podcast

13 Listeners

WRINT: Wer redet ist nicht tot by Holger Klein

WRINT: Wer redet ist nicht tot

16 Listeners

AstroGeo - Geschichten aus Astronomie und Geologie by Karl Urban und Franziska Konitzer

AstroGeo - Geschichten aus Astronomie und Geologie

7 Listeners

Sternengeschichten by Florian Freistetter

Sternengeschichten

44 Listeners

Geschichten aus der Geschichte by Richard Hemmer und Daniel Meßner

Geschichten aus der Geschichte

189 Listeners

Eine Stunde History - Deutschlandfunk Nova by Deutschlandfunk Nova

Eine Stunde History - Deutschlandfunk Nova

109 Listeners

Hotel Matze by Matze Hielscher & Mit Vergnügen

Hotel Matze

152 Listeners

UKW by Metaebene Personal Media - Tim Pritlove

UKW

1 Listeners

Spektrum-Podcast by detektor.fm – Das Podcast-Radio

Spektrum-Podcast

16 Listeners

Science Busters Podcast by Martin Puntigam, Martin Moder, Florian Freistetter

Science Busters Podcast

4 Listeners

LANZ & PRECHT by ZDF, Markus Lanz & Richard David Precht

LANZ & PRECHT

307 Listeners

Der KI-Podcast by ARD

Der KI-Podcast

13 Listeners

Geschichten aus der Mathematik by detektor.fm – Das Podcast-Radio

Geschichten aus der Mathematik

1 Listeners