Background: Numerous diets, apps and websites help guide and monitor dietary behaviour with the goal of losing weight, yet dieting success is highly dependent on personal preferences and circumstances. To enable a more quantitative approach to dieting, we developed an integrated platform that allows tracking of life-style information alongside molecular biofeedback measurements (lactate and insulin).
Methods: To facilitate weight loss, participants (≥18 years) omitted one main meal from the usual three-meal routine. Daily caloric intake was restricted to ~1200KCal with one optional snack ≤250KCal. A mobile health platform (personalhealth.warwick.ac.uk) was developed and used to maintain diaries of food intake, weight, urine collection and volume. A survey was conducted to understand participants’ willingness to collect samples, motivation for taking part in the study and reasons for dropout.
Results: Meal skipping resulted in weight loss after a 24 h period in contrast to 3-meal control days regardless of the meal that was skipped, breakfast, lunch or dinner (p < 0.001). Common reasons for engagement were interest in losing weight and personal metabolic profile. Total insulin and lactate values varied significantly between healthy and obese individuals at p = 0.01 and 0.05 respectively.
Conclusion: In a proof of concept study with a meal-skipping diet, we show that insulin and lactate values in urine correlate with weight loss, making these molecules potential candidates for quantitative feedback on food intake behaviour to people dieting.
Tejpal S, Sanghera N, Manoharan V, Planas-Iglesias J, Myler K, Klein-Seetharaman J. Towards personalised molecular feedback for weight loss. BMC Obes. 2019;6:20. Published 2019 May 6. doi:10.1186/s40608-019-0237-5.
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,unless otherwise stated.
Sections of the Abstract, Introduction, Discussion, and Conclusion are presented in the Podcast. Access the full-text article here: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501287/