Linear Digressions

Unsupervised Dimensionality Reduction: UMAP vs t-SNE


Listen Later

Dimensionality reduction redux: this episode covers UMAP, an unsupervised algorithm designed to make high-dimensional data easier to visualize, cluster, etc. It’s similar to t-SNE but has some advantages. This episode gives a quick recap of t-SNE, especially the connection it shares with information theory, then gets into how UMAP is different (many say better).
Between the time we recorded and released this episode, an interesting argument made the rounds on the internet that UMAP’s advantages largely stem from good initialization, not from advantages inherent in the algorithm. We don’t cover that argument here obviously, because it wasn’t out there when we were recording, but you can find a link to the paper below.
Relevant links:
https://pair-code.github.io/understanding-umap/
https://www.biorxiv.org/content/10.1101/2019.12.19.877522v1
...more
View all episodesView all episodes
Download on the App Store

Linear DigressionsBy Ben Jaffe and Katie Malone

  • 4.8
  • 4.8
  • 4.8
  • 4.8
  • 4.8

4.8

353 ratings


More shows like Linear Digressions

View all
Stuff You Should Know by iHeartPodcasts

Stuff You Should Know

78,246 Listeners

Practical AI by Practical AI LLC

Practical AI

213 Listeners