Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU

Using wind fields from a high resolution atmospheric model for simulating snow dynamics in mountainous terrain


Listen Later

It is widely known that the snow cover has a major influence on the hydrology of Alpine watersheds. Snow acts as temporal storage for precipitation during the winter season. The stored water is later released as snowmelt and represents an important component of water supply for the downstream population of large mountain-foreland river systems worldwide. Modelling the amount and position of the snow water stored in the headwater catchments helps to quantify the available water resources and to estimate the timing of their release. The presented work investigates wind induced snow transport processes which are considered to be crucial for the snow distribution in Alpine catchments. In contradiction to the importance that is attributed to this process, there are only a few studies available which have quantified the transport intensities on the catchment scale. This can be attributed to the fact that the even today not much is known about the spatial characteristics of wind fields which are the driving force for snow transport processes. The presented thesis tries to overcome this lack of information by using physically based wind fields predicted by an atmospheric model (PSU_NCAR MM5 model) for the modelling of the snow cover (simulated by SnowModel). All of the used models are described in great detail in the literature, validated in many different regions, and can be seen as applicable with regard to the goal of this work. As snow transport processes are particularly important on a comparatively small scale a numerical inclusion of the responsible processes into regional models is inadequate. Hence, while this study itself mainly uses smaller scale physically based models, a parameterisation scheme is presented at the end of this thesis that is able to incorporate its main findings into larger scale models.
All of the presented work was carried out at the Berchtesgaden National Park. The site is highly appropriate because of the extremely rough terrain and the good accessibility. Furthermore, the instrumentation of the area is comparatively good and the data sources (GIS, field campaign data) are excellent. The thesis deals with the winter seasons (August - July) 2003/2004 and 2004/2005. For this period, data of 5 meteorological stations, 1 field campaign and two Landsat ETM+ images were available.
As mentioned before, physically based wind fields were used as input for the snow transport modelling. An operational coupling between atmospheric model and snow transport model was not pursued because of the high computational costs of the atmospheric model. Thus, a library of representative wind fields was produced in advance and linked to the snow transport model via operational German weather service Lokalmodell results. This becomes possible because of the comparability of a MM5 model layer with one of the Lokalmodell model layers. To link the wind field library to the snow model all of the predicted MM5 wind fields were characterised by information available from the Lokalmodell. This enable an easy detection of the MM5 wind field which is closest to the real climatic wind conditions at any Lokalmodell time step (1 hour).
The produced MM5 wind fields have a spatial resolution of 200 meters. As an initial check if the snow cover simulation of SnowModel in association with the wind field library delivers adequate results with respect to the snow distribution, model runs were first carried out at the 200m scale. An analysis of the results showed that the coupled routine delivers acceptable results. It could be seen that with the use of the MM5 wind fields, the snow cover becomes more anisotropic and that transport processes over crests as well as sublimation processes are predicted to become more intensive. Nevertheless, a higher resolution was needed to quatify the effects and to validate the results.
In a subsequent step the MM5 wind fields were downscaled to a 30m resolution. The downscaling procedure lead to a better agree
...more
View all episodesView all episodes
Download on the App Store

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMUBy Ludwig-Maximilians-Universität München


More shows like Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU

View all
Tonspur Forschung by Annik Rubens

Tonspur Forschung

3 Listeners

Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft - Digitale Hochschulschriften der LMU by Ludwig-Maximilians-Universität München

Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft - Digitale Hochschulschriften der LMU

0 Listeners

MCMP – Mathematical Philosophy (Archive 2011/12) by MCMP Team

MCMP – Mathematical Philosophy (Archive 2011/12)

6 Listeners

LMU Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft - Vorlesungen und Vorträge by Professoren der Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft

LMU Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft - Vorlesungen und Vorträge

0 Listeners

Center for Advanced Studies (CAS) Cutting Edge - SD by Center for Advanced Studies (CAS)

Center for Advanced Studies (CAS) Cutting Edge - SD

0 Listeners

MCMP – Philosophy of Science by MCMP Team

MCMP – Philosophy of Science

2 Listeners

Epistemology and Philosophy of Science: Prof. Dr. Stephan Hartmann – HD by Ludwig-Maximilians-Universität München

Epistemology and Philosophy of Science: Prof. Dr. Stephan Hartmann – HD

1 Listeners

Sommerfeld Lecture Series (ASC) by The Arnold Sommerfeld Center for Theoretical Physics (ASC)

Sommerfeld Lecture Series (ASC)

0 Listeners

MCMP by MCMP Team

MCMP

2 Listeners

Women Thinkers in Antiquity and the Middle Ages - SD by Peter Adamson

Women Thinkers in Antiquity and the Middle Ages - SD

0 Listeners