Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02

Verification of Non-Regular Program Properties


Listen Later

Most temporal logics which have been introduced and studied in the past decades can be embedded into the modal mu-calculus. This is the case for e.g. PDL, CTL, CTL*, ECTL, LTL, etc. and entails that these logics cannot express non-regular program properties. In recent years, some novel approaches towards an increase in expressive power have been made: Fixpoint Logic with Chop enriches the mu-calculus with a sequential composition operator and thereby allows to characterise context-free processes. The Modal Iteration Calculus uses inflationary fixpoints to exceed the expressive power of the mu-calculus. Higher-Order Fixpoint Logic (HFL) incorporates a simply typed lambda-calculus into a setting with extremal fixpoint operators and even exceeds the expressive power of Fixpoint Logic with Chop. But also PDL has been equipped with context-free programs instead of regular ones.
In terms of expressivity there is a natural demand for richer frameworks since program property specifications are simply not limited to the regular sphere. Expressivity however usually comes at the price of an increased computational complexity of logic-related decision problems. For instance are the satisfiability problems for the above mentioned logics undecidable. We investigate in this work the model checking problem of three different logics which are capable of expressing non-regular program properties and aim at identifying fragments with feasible model checking complexity.
Firstly, we develop a generic method for determining the complexity of model checking PDL over arbitrary classes of programs and show that the border to undecidability runs between PDL over indexed languages and PDL over context-sensitive languages. It is however still in PTIME for PDL over linear indexed languages and in EXPTIME for PDL over indexed languages. We present concrete algorithms which allow implementations of model checkers for these two fragments.
We then introduce an extension of CTL in which the UNTIL- and RELEASE- operators are adorned with formal languages. These are interpreted over labeled paths and restrict the moments on such a path at which the operators are satisfied. The UNTIL-operator is for instance satisfied if some path prefix forms a word in the language it is adorned with (besides the usual requirement that until that moment some property has to hold and at that very moment some other property must hold). Again, we determine the computational complexities of the model checking problems for varying classes of allowed languages in either operator. It turns out that either enabling context-sensitive languages in the UNTIL or context-free languages in the RELEASE- operator renders the model checking problem undecidable while it is EXPTIME-complete for indexed languages in the UNTIL and visibly pushdown languages in the RELEASE- operator. PTIME-completeness is a result of allowing linear indexed languages in the UNTIL and deterministic context-free languages in the RELEASE. We do also give concrete model checking algorithms for several interesting fragments of these logics.
Finally, we turn our attention to the model checking problem of HFL which we have already studied in previous works. On finite state models it is k-EXPTIME-complete for HFL(k), the fragment of HFL obtained by restricting functions in the lambda-calculus to order k. Novel in this work is however the generalisation (from the first-order case to the case for functions of arbitrary order) of an idea to improve the best and average case behaviour of a model checking algorithm by using partial functions during the fixpoint iteration guided by the neededness of arguments. This is possible, because the semantics of a closed HFL formula is not a total function but the value of a function at some argument. Again, we give a concrete algorithm for such an improved model checker and argue that despite the very high model checking complexity this improvement is very useful in practice and gives
...more
View all episodesView all episodes
Download on the App Store

Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02By Ludwig-Maximilians-Universität München

  • 5
  • 5
  • 5
  • 5
  • 5

5

1 ratings


More shows like Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02

View all
Tonspur Forschung by Annik Rubens

Tonspur Forschung

3 Listeners

Einführung in die Ethnologie by Prof. Dr. Frank Heidemann

Einführung in die Ethnologie

0 Listeners

Theoretical Physics Schools (ASC) by The Arnold Sommerfeld Center for Theoretical Physics (ASC)

Theoretical Physics Schools (ASC)

2 Listeners

MCMP – Mathematical Philosophy (Archive 2011/12) by MCMP Team

MCMP – Mathematical Philosophy (Archive 2011/12)

6 Listeners

Hegel lectures by Robert Brandom, LMU Munich by Robert Brandom, Axel Hutter

Hegel lectures by Robert Brandom, LMU Munich

6 Listeners

MCMP – Metaphysics and Philosophy of Language by MCMP Team

MCMP – Metaphysics and Philosophy of Language

2 Listeners

MCMP – Philosophy of Science by MCMP Team

MCMP – Philosophy of Science

1 Listeners

Sommerfeld Lecture Series (ASC) by The Arnold Sommerfeld Center for Theoretical Physics (ASC)

Sommerfeld Lecture Series (ASC)

0 Listeners

MCMP by MCMP Team

MCMP

2 Listeners

Women Thinkers in Antiquity and the Middle Ages - SD by Peter Adamson

Women Thinkers in Antiquity and the Middle Ages - SD

0 Listeners