Sağlıkta teknolojik dönüşüm ve akıllı tanısal uygulamalar, bir diğer adı ile robot muayenesi ile, kendi kendine teşhis döneminin popülerliği gittikçe artmaktadır. Kullanıma sunulmuş fakat yaygınlaşamayan, halen kullanımda mevcut olan ya da piyasaya sürülecek çok fazla yapay zeka uygulaması gündemi daha da meşgul edecek gibi görünmektedir.. Acil tıpta da kullanımı oldukça popüler olabilecek bazı uygulamalardan bahsetmeden önce yapay zekanın tanımından, etkileşimde bulunduğu alanlardan ve kullandığı metodolojiden bahsedilmelidir.
TANIMLAR
Doğal zekayı insan zekası, teknolojik sistemleri de makine olarak tanımlarsak yapay zeka insan zekasını taklit eden yani insan gibi düşünen ve davranan sistemlerdir. Bu tanımda insan gibi düşünüp davranması konusu; insanların da hayatta kalmak için doğru ve mantıklı düşünebildiği inancına dayanmaktadır.
Halen insan zekasının tam anlamda birebir taklidi olamasa da aklın bilişsel yani öğrenme ve problem çözme fonksiyonlarının taklit edilebilirliği üzerine kurulu sistemlerdir.
Günlük hayatta bir problemi çözmede duyularla algıladıklarımızı, öğrendiklerimizi ve deneyimlerimizi (input) kullanarak problemi analiz eder (düşünme-process) ve dış dünyaya tepki veririz (output). Makinelerin de bu süreci yapabilme potansiyeli, yaygın olarak Kasparov’u yenen ilk bilgisayar Deep Blue olarak bilinse de; 1950'lerde Alan Turing tarafından keşfedilmiştir.
Turing makinelerin taklit yeteneğinin o kadar iyi olduğuna inanıyordu ki, bir dizi soruya verilen cevaplara bakarak, kişilerin hangisi makine hangisi bilgisayar olduğunu anlayamayacaklarını iddia etmişti.
Karıştırılan bir diğer terim ise robotlar ve robotik. Robot (-ik, bilim dalı) bir bilgisayar aracılığı ile programlanabilen bir dizi eylemi otomatik olarak yapabilen makinelere denir. Yapay zeka robotların içine entegre olabilir ya da olmayabilir.
Yapay zekanın insanı taklit edebilme yeteneği, programlanabilir kodlardan çok, kendisine sunulan verilerden denetimli ya da denetimsiz olarak kendi oluşturduğu hesaplamalar ve makine öğrenmesi yöntemlerine dayanmaktadır. Denetimli ve denetimsiz makine öğrenmesi yöntemleri ayrı bir konu olarak ele alınabilir. Kısaca anlatmak gerekirse belirli bir sonuca ulaşılmak için verileri algoritmalar ve istatistiksel modelleri kullanarak matematiksel bir model üzerinden yorumlayıp çıkarım yapan ve karar veren sistemlerdir.
Acil serviste hesaplanacak, analiz edilecek büyük veri setlerinden makine öğrenmesi, istatistik ve veritabanı sistemleri kullanılarak bilgi edinme sürecine de veri madenciliği adı verilmektedir.
Her biri ve her birinin alt dalları ( yapay sinir ağları, genetik algoritmalar, derin öğrenme, karar ağaçları, vs…) ayrı yazı konusu olabilecek bu alanların birbiriyle olan etkileşimleri aşağıdaki şekillerde görülmektedir.
Statistics: İstatistikData Mining: Veri MadenciliğiArtificial Intelligence: Yapay ZekaMachine Learning: Makine Öğrenmesi
Statistics: İstatistikData Mining: Veri MadenciliğiAI: Yapay ZekaDatabases:VeritabanlarıKDD: Veritabanından bilgi keşfi( Knowledge Discovery in Databases)Machine Le...