Linear Digressions

Zeroing in on what makes adversarial examples possible


Listen Later

Adversarial examples are really, really weird: pictures of penguins that get classified with high certainty by machine learning algorithms as drumsets, or random noise labeled as pandas, or any one of an infinite number of mistakes in labeling data that humans would never make but computers make with joyous abandon. What gives? A compelling new argument makes the case that it’s not the algorithms so much as the features in the datasets that holds the clue. This week’s episode goes through several papers pushing our collective understanding of adversarial examples, and giving us clues to what makes these counterintuitive cases possible.
Relevant links:
https://arxiv.org/pdf/1905.02175.pdf
https://arxiv.org/pdf/1805.12152.pdf
https://distill.pub/2019/advex-bugs-discussion/
https://arxiv.org/pdf/1911.02508.pdf
...more
View all episodesView all episodes
Download on the App Store

Linear DigressionsBy Ben Jaffe and Katie Malone

  • 4.8
  • 4.8
  • 4.8
  • 4.8
  • 4.8

4.8

353 ratings


More shows like Linear Digressions

View all
Stuff You Should Know by iHeartPodcasts

Stuff You Should Know

78,608 Listeners

Practical AI by Practical AI LLC

Practical AI

200 Listeners