
Sign up to save your podcasts
Or


こんにちは、新人エンジニアの皆さん!今回は、生成AIの「Claude」に新しく追加された画期的な機能、「Agent Skills」について、その概要とメリット、簡単な作り方をご紹介します。
最近、GitHub CopilotのようにAIが開発をサポートするツールが増えていますが、ClaudeのAgent Skillsは、AI自身を特定のタスクに特化させ、あなたの仕事をもっと効率的にしてくれる機能です。まるで、Claudeに新しい「専門スキル」を教えるようなイメージですね。
Agent Skillsって何がすごいの?
どうやってスキルを作るの?
記事では、Semantic Versioning(バージョン管理のルール)に沿ったコミットメッセージを自動生成するスキルを作成する例が紹介されています。一度作成したスキルは、Claude Codeを再起動するだけで自動的に有効になり、「コミットしてください」といった指示に対して、Claudeが状況を判断して適切なコミットメッセージを生成してくれます。
まとめ
引用元: https://tech.findy.co.jp/entry/2025/10/27/070000
近年、大規模言語モデル (LLM) の進化に伴い、LLMが自律的に意思決定し外部ツールを使って複雑なタスクをこなす「AI エージェント」が注目されています。これは、単なるテキスト生成を超え、現実世界の問題解決に役立つ可能性を秘めています。
この記事では、AI エージェントの主要な手法である「ReAct (Reasoning and Acting) エージェント」に焦点を当て、その仕組みと実装、そして開発・運用を効率化するツールキットを紹介しています。
ReAct エージェントの核となるのは、LLMが「リーズニング(推論)」と「アクション(行動)」を繰り返すプロセスです。ユーザーの指示に対し、LLMはまず次に何をすべきかを推論し、必要であれば「Tool Calling(ツール呼び出し)」機能を使って外部ツール(例:Wikipedia検索、現在時刻取得など)を選択します。Tool Callingは、LLMが最適なツールとその使い方を判断する機能で、実際のツール実行は別のプログラムが行います。この推論とツールの実行を繰り返すことで、エージェントは目標を達成し、最終的な回答を導き出します。
ReActエージェントの実装には、LLMのオーケストレーションツールであるLangChainから派生した「LangGraph」が活用されます。LangGraphの最大の特徴は、エージェントの挙動を「ノード(処理の単位)」と「エッジ(ノード間の接続)」で構成されるグラフとして構築できる点です。これにより、ループや条件分岐といった複雑なエージェントの処理フローも直感的に、かつ柔軟に設計・実装することが可能です。ノード間で情報を共有する「ステート」を使い、LLMの推論やツール実行といった各ステップをノードとして定義し、ツール使用の有無に応じて処理を分岐させる「条件付きエッジ」でReActの反復構造を表現します。
さらに、エージェントシステムの開発から運用までを一貫して支援するNVIDIAのオープンソースツールキット「NeMo Agent Toolkit」も紹介されています。エージェント開発では、様々な構成の迅速な試行、パフォーマンスの最適化、そしてシステムの状態を把握する「オブザーバビリティ(可観測性)」が重要となります。NeMo Agent Toolkitは、YAMLファイルを使ってエージェントやツール、LLMの構成を簡単に定義・実行できるのが特徴です。評価やパフォーマンスボトルネックを特定するプロファイリング機能、エージェントの思考過程やツールの利用状況を詳細にトレースできるオブザーバビリティ機能(Phoenixなどと連携)を提供し、開発者がエージェントの機能改善に集中できるよう支援します。
LangGraphによる柔軟なReActエージェントの実装と、NeMo Agent Toolkitによる効率的な開発・運用支援は、AIエージェントシステムの構築を大きく加速させます。
引用元: https://developer.nvidia.com/ja-jp/blog/practical-tutorial-on-react-langgraph-nemo-agent-toolkit/
最近のAI技術、特に自律型AIエージェントは、まるで人間のように考えて行動できると期待されています。しかし、実際に複雑な指示を与えると、途中で「何をすべきだったか」を忘れてしまい、タスクを最後までやり遂げられないという困った問題が起こりがちです。これは、AIが大量の情報を処理し続ける中で、最初に与えられた指示(高レベルな計画)と、その途中で行う具体的な操作や環境からの情報(低レベルな実行やフィードバック)を、一つの「コンテキスト(文脈や記憶のようなもの)」として管理しきれなくなり、混乱してしまうことが原因です。
この問題を解決するために、「コンテキストエンジニアリング」というアプローチが注目されています。これは、AIエージェントが持つコンテキストを賢く管理する手法で、特に「Isolate Context(コンテキストの分離)」が有効だとされています。簡単に言うと、一つのAIエージェントに全てをやらせるのではなく、役割に応じて複数のAIエージェントに仕事を分担させることで、それぞれが担当するコンテキストをシンプルに保ち、効率よくタスクを進めようという考え方です。
具体的な解決策として、以下の3つの手法が紹介されています。
Plan and Act(計画と実行の分離):
階層型マルチエージェント(オーケストレーター):
特化型の専門家エージェントへの分解:
これらのマルチエージェント化を通じてコンテキストを適切に管理することで、AIエージェントは複雑な指示も忘れずに、最後までタスクをやり遂げられるようになります。今後のAIエージェント開発において、これらの手法は非常に重要な知見となるでしょう。
引用元: https://techblog.insightedge.jp/entry/multi-agent-context-engineering
サイゼリヤのセルフオーダーシステムが、シンプルすぎてプログラミング初心者のアプリのようだ、と話題になりました。しかし、多くのエンジニアは、その見た目とは裏腹に「要件定義」と「UX(ユーザー体験)」の本質を深く理解していると評価。紙メニューとの連携、番号入力の簡便さ、スマホ性能に左右されない軽快さなど、利用者の使いやすさと店舗の回転率を最優先しています。開発・保守コストも考慮された、まさに「シンプル・イズ・ベスト」な設計だと、エンジニアの間で感心を集めています。
引用元: https://togetter.com/li/2621035
(株式会社ずんだもんは架空の登場組織です)
By 株式会社ずんだもん技術室AI放送局こんにちは、新人エンジニアの皆さん!今回は、生成AIの「Claude」に新しく追加された画期的な機能、「Agent Skills」について、その概要とメリット、簡単な作り方をご紹介します。
最近、GitHub CopilotのようにAIが開発をサポートするツールが増えていますが、ClaudeのAgent Skillsは、AI自身を特定のタスクに特化させ、あなたの仕事をもっと効率的にしてくれる機能です。まるで、Claudeに新しい「専門スキル」を教えるようなイメージですね。
Agent Skillsって何がすごいの?
どうやってスキルを作るの?
記事では、Semantic Versioning(バージョン管理のルール)に沿ったコミットメッセージを自動生成するスキルを作成する例が紹介されています。一度作成したスキルは、Claude Codeを再起動するだけで自動的に有効になり、「コミットしてください」といった指示に対して、Claudeが状況を判断して適切なコミットメッセージを生成してくれます。
まとめ
引用元: https://tech.findy.co.jp/entry/2025/10/27/070000
近年、大規模言語モデル (LLM) の進化に伴い、LLMが自律的に意思決定し外部ツールを使って複雑なタスクをこなす「AI エージェント」が注目されています。これは、単なるテキスト生成を超え、現実世界の問題解決に役立つ可能性を秘めています。
この記事では、AI エージェントの主要な手法である「ReAct (Reasoning and Acting) エージェント」に焦点を当て、その仕組みと実装、そして開発・運用を効率化するツールキットを紹介しています。
ReAct エージェントの核となるのは、LLMが「リーズニング(推論)」と「アクション(行動)」を繰り返すプロセスです。ユーザーの指示に対し、LLMはまず次に何をすべきかを推論し、必要であれば「Tool Calling(ツール呼び出し)」機能を使って外部ツール(例:Wikipedia検索、現在時刻取得など)を選択します。Tool Callingは、LLMが最適なツールとその使い方を判断する機能で、実際のツール実行は別のプログラムが行います。この推論とツールの実行を繰り返すことで、エージェントは目標を達成し、最終的な回答を導き出します。
ReActエージェントの実装には、LLMのオーケストレーションツールであるLangChainから派生した「LangGraph」が活用されます。LangGraphの最大の特徴は、エージェントの挙動を「ノード(処理の単位)」と「エッジ(ノード間の接続)」で構成されるグラフとして構築できる点です。これにより、ループや条件分岐といった複雑なエージェントの処理フローも直感的に、かつ柔軟に設計・実装することが可能です。ノード間で情報を共有する「ステート」を使い、LLMの推論やツール実行といった各ステップをノードとして定義し、ツール使用の有無に応じて処理を分岐させる「条件付きエッジ」でReActの反復構造を表現します。
さらに、エージェントシステムの開発から運用までを一貫して支援するNVIDIAのオープンソースツールキット「NeMo Agent Toolkit」も紹介されています。エージェント開発では、様々な構成の迅速な試行、パフォーマンスの最適化、そしてシステムの状態を把握する「オブザーバビリティ(可観測性)」が重要となります。NeMo Agent Toolkitは、YAMLファイルを使ってエージェントやツール、LLMの構成を簡単に定義・実行できるのが特徴です。評価やパフォーマンスボトルネックを特定するプロファイリング機能、エージェントの思考過程やツールの利用状況を詳細にトレースできるオブザーバビリティ機能(Phoenixなどと連携)を提供し、開発者がエージェントの機能改善に集中できるよう支援します。
LangGraphによる柔軟なReActエージェントの実装と、NeMo Agent Toolkitによる効率的な開発・運用支援は、AIエージェントシステムの構築を大きく加速させます。
引用元: https://developer.nvidia.com/ja-jp/blog/practical-tutorial-on-react-langgraph-nemo-agent-toolkit/
最近のAI技術、特に自律型AIエージェントは、まるで人間のように考えて行動できると期待されています。しかし、実際に複雑な指示を与えると、途中で「何をすべきだったか」を忘れてしまい、タスクを最後までやり遂げられないという困った問題が起こりがちです。これは、AIが大量の情報を処理し続ける中で、最初に与えられた指示(高レベルな計画)と、その途中で行う具体的な操作や環境からの情報(低レベルな実行やフィードバック)を、一つの「コンテキスト(文脈や記憶のようなもの)」として管理しきれなくなり、混乱してしまうことが原因です。
この問題を解決するために、「コンテキストエンジニアリング」というアプローチが注目されています。これは、AIエージェントが持つコンテキストを賢く管理する手法で、特に「Isolate Context(コンテキストの分離)」が有効だとされています。簡単に言うと、一つのAIエージェントに全てをやらせるのではなく、役割に応じて複数のAIエージェントに仕事を分担させることで、それぞれが担当するコンテキストをシンプルに保ち、効率よくタスクを進めようという考え方です。
具体的な解決策として、以下の3つの手法が紹介されています。
Plan and Act(計画と実行の分離):
階層型マルチエージェント(オーケストレーター):
特化型の専門家エージェントへの分解:
これらのマルチエージェント化を通じてコンテキストを適切に管理することで、AIエージェントは複雑な指示も忘れずに、最後までタスクをやり遂げられるようになります。今後のAIエージェント開発において、これらの手法は非常に重要な知見となるでしょう。
引用元: https://techblog.insightedge.jp/entry/multi-agent-context-engineering
サイゼリヤのセルフオーダーシステムが、シンプルすぎてプログラミング初心者のアプリのようだ、と話題になりました。しかし、多くのエンジニアは、その見た目とは裏腹に「要件定義」と「UX(ユーザー体験)」の本質を深く理解していると評価。紙メニューとの連携、番号入力の簡便さ、スマホ性能に左右されない軽快さなど、利用者の使いやすさと店舗の回転率を最優先しています。開発・保守コストも考慮された、まさに「シンプル・イズ・ベスト」な設計だと、エンジニアの間で感心を集めています。
引用元: https://togetter.com/li/2621035
(株式会社ずんだもんは架空の登場組織です)