In 1935, the famous physicist Erwin Schrödinger was debating with his friend Albert Einstein about the nature of a fundamental concept in quantum mechanics – a field that was, at the time, still very new. To illustrate his point, Schrödinger proposed a thought experiment wherein a (rather unfortunate) cat sealed in a box is both alive and dead simultaneously – up until the moment someone opens the box. Decades later, that abstract paradox is still very much alive, and enabling the development of a new generation of computers.
These quantum computers use bits (called qubits) that, unlike the binary bits in today’s electronics, can simultaneously exist in many states between on and off. And although the word gets overused in science, this emerging technology really is revolutionary. A fully developed quantum computer is predicted to be able to perform calculations that would be impossible for a traditional supercomputer, even with thousands of years of processing time.
In this episode, our experts chat about the current state of quantum computers and explain why the mind-bending theories of quantum make coming to work a lot of fun.
Featuring:
Irfan Siddiqi is a professor at UC Berkeley, where he leads the Quantum Nanoelectronics Laboratory, a collaborative group dedicated to developing new and improved superconducting qubits. He is also a faculty scientist at Berkeley Lab, where he leads the Advanced Quantum Testbed and the Quantum Systems Accelerator – a DOE National Quantum Information Science Research Center.
Zahra Pedramrazi is a project scientist at the Advanced Quantum Testbed. During her physics undergraduate, she took a quantum class with Irfan, and became hooked on the field. She is currently focused on the fabrication of superconducting qubits, working to refine their design in order to overcome the limitations of current qubits.
"Thus, the task is, not so much to see what no one has yet seen; but to think what nobody has yet thought, about that which everybody sees." ― Erwin Schrödinger
“How wonderful that we have met with a paradox. Now we have some hope of making progress.” ― Niels Bohr