Sign up to save your podcastsEmail addressPasswordRegisterOrContinue with GoogleAlready have an account? Log in here.
FAQs about AI Podcast:How many episodes does AI Podcast have?The podcast currently has 399 episodes available.
January 04, 2025统一序列并行方法:为长上下文生成式AI赋能本播客深入探讨了统一序列并行(Unified Sequence Parallelism,简称USP)方法,这是一种用于训练具有极长上下文的生成式AI模型的先进技术。我们分析了现有的序列并行方法,如DeepSpeed-Ulysses和Ring-Attention,并提出了一个统一的框架,该框架结合了两者的优点,同时克服了它们的局限性。通过详细讨论,我们将深入了解USP如何与数据并行、张量并行、ZeRO和流水线并行等现有并行技术相结合,从而为4D混合并行系统提供最佳实践。此外,我们还分享了实验结果,这些结果强调了USP在各种硬件配置下的性能,并展示了其在扩展模型上下文长度和提高训练效率方面的潜力。...more8minPlay
January 04, 2025LoongTrain: 高效长序列大语言模型训练本期播客深入探讨LoongTrain,一个为长序列大语言模型设计的高效训练框架。我们将讨论其核心的2D注意力机制,以及它如何结合头并行和上下文并行来克服扩展性限制并保持效率。此外,还将分析Double-Ring-Attention机制,以及设备放置策略对训练速度的影响。...more8minPlay
January 04, 2025Ring Attention with Blockwise Transformers for Near-Infinite ContextA podcast discussing a novel approach to scale transformer models to handle near-infinite context lengths....more7minPlay
January 04, 2025FlashAttention-3: Revolutionizing Attention Mechanisms on GPUsA podcast discussing the FlashAttention-3 algorithm, its improvements over previous versions, and its impact on large language models....more5minPlay
January 04, 2025AI FlashAttention-2 PodcastA fast-paced discussion on FlashAttention-2, a faster attention mechanism for Transformers, exploring its algorithms, parallelism, and performance benefits....more7minPlay
January 04, 2025FlashAttention: 高效且内存优化的精确注意力机制探讨 FlashAttention 算法,一种在 GPU 上实现快速、内存高效精确注意力机制的新方法。深入分析其 IO 复杂度,并与现有的注意力机制进行性能比较。...more8minPlay
January 04, 2025DeepSpeed Ulysses: 极端长序列Transformer模型训练的系统优化本播客深入探讨了DeepSpeed Ulysses,一种用于训练具有极长序列长度的Transformer模型的创新方法,它通过优化序列并行性和通信效率,显著提升了训练速度和可扩展性。我们将讨论其核心设计、通信分析、内存效率以及与现有方法的比较。...more8minPlay
January 04, 2025DistFlashAttn: 分布式长文本大语言模型训练的内存高效注意力机制本播客深入探讨 DistFlashAttn,一种专为长文本大语言模型训练设计的分布式内存高效注意力机制,详细解析其核心技术和性能优势。...more7minPlay
January 04, 2025大型Transformer模型中减少激活重计算本播客讨论了一种加速大型Transformer模型训练的新方法,通过减少激活重计算来实现。我们将深入探讨序列并行和选择性激活重计算技术。...more7minPlay
January 04, 2025序列并行:从系统角度进行长序列训练探讨一种名为“序列并行”的内存高效并行方法,该方法旨在突破输入序列长度的限制,并能在GPU上高效训练更长的序列。该方法与现有的并行技术兼容,并能实现4D并行。核心思想是将输入序列分割成多个块,并分配给不同的GPU进行处理。为了计算注意力输出,引入了环形自注意力机制。...more6minPlay
FAQs about AI Podcast:How many episodes does AI Podcast have?The podcast currently has 399 episodes available.