Share Bringing Chemistry to Life
Share to email
Share to Facebook
Share to X
By Thermo Fisher Scientific
4.6
99 ratings
The podcast currently has 57 episodes available.
According to the second law of thermodynamics, the entropy of a system will always increase. For a layperson, this means that all things must come to pass and nothing lasts forever. Since no person or thing can evade the laws of physics, this also applies to Bringing Chemistry to Life.
In this final message from Paolo, the series’ creator and host, we hear about how the series started and how it’s been fueled by the passion of guests, host, and listeners, alike. It is with gratitude that we reflect on the 55 episodes of great science, and great people, that we’ve been able to capture and share. Many of the conversations are timeless, but for now we say, goodbye. Thank you for being part of the journey!
Related episodes:
The Archives:
A free thank you gift for our listeners!
We read every email so please share your questions and feedback with us!
Join us for this look into materials chemistry, developed under the guiding principles of sustainability and a systems approach.
Dr. Zlatka Stoeva, Co-founder and Managing Director of DZP Technologies, discovered her love of chemistry out of boredom as a child. She then traveled to unknown lands to master her science and discover the value of mentors while doing amazing work on lithium-ion battery chemistry. A stint in the technology transfer office at Cambridge showed her how fundamental research can be translated into real-world solutions that can change lives, and this inspired her to start her own company.
In providing CRO services and developing IP to help companies address market needs using unique materials, Stoeva and her colleagues approach problems with a systems mindset that is common in engineering, but not always chemistry. We hear about their work in “plastic electronics” that leverage biological materials and consider sustainability aspects while delivering results. We also hear about their exciting work using graphene materials to produce digitized materials that can code information about how they’re made and their interactions with the environment.
Check out this great episode that balances a wonderful personal story, amazing science, and great bits of advice to guide your science and career development!
Related episodes:
Bonus content!
A free thank you gift for our listeners!
We read every email so please share your questions and feedback with us!
Some debate that synthetic organic chemistry strategies have become stale, but Dr. Todd Hyster of Princeton University's Hyster Lab disagrees.
Todd fell in love with organic chemistry early in his education, but it wasn’t until he got turned on to enzyme catalysis that he found his true calling. He’s built a career using engineered enzymes to facilitate chemical transformations that would otherwise not be possible. Specifically, he and his team focus on photo-enzymatic catalysis where they use a combination of light and engineered proteins to drive new chemical transformations.
Join us to learn about his work, the methods involved, and the types of transformations being accomplished, which is beyond enantioselective synthesis, by the way. This stimulating conversation delves into the tactical and philosophical aspects of the synthetic chemistry, enzyme catalysis, and even the realities of academic funding and industry collaboration.
Related episodes:
Bonus content!
A free thank you gift for our listeners!
We read every email so please share your questions and feedback with us!
Early in her career, Dr. Jessica Reiner realized that she cared more about ensuring the accuracy of the measurements she was making than making the measurements themselves. This realization, combined with experience in working with PFAS, led to her current role as Research Chemist at the National Institute of Standards and Technology (NIST).
Join us to hear an insider’s perspective on the PFAS topic, with a deep dive into the analytical methods used to detect, quantify, and identify PFAS species. Jessica and her team use LC-MS, anion exchange chromatography, and other orthogonal methods in their work and they focus on creating, validating, and maintaining reference materials (RM) and standard reference materials (SRM) that are used to help ensure that PFAS measurements are accurate and comparable with those made in other laboratories around the world. From challenges around defining a PFAS, to creating a stable, ultra-low concentration standard, to detecting ultra-high concentrations PFAS, Jessica provides an ace analytical chemist’s perspective grounded in the metrology of it all.
As always, and in addition to the great science, you’ll get to learn about Jessica’s personal career path, the ups and downs of her work, and hear her advice for career development.
Related episodes:
Bonus content!
A free thank you gift for our listeners!
We read every email so please share your questions and feedback with us!
Bioconjugation of antibodies to drugs via chemical linkers is how antibody drug conjugates (ADCs) are made. We’re joined by Matt Giese, Senior Scientist at Vector Laboratories, who talks us through the complex chemistry options and biodesign considerations that have to be considered and balanced when making a successful ADC.
How does one build the skillset to work in biodesign of ADCs you might ask? Well, Matt’s career path might not provide a clearcut roadmap like you might hope. That’s because Matt started his career as an auto mechanic, moved into art, went back to auto mechanics, worked as baggage handler and as a construction worker, all before ever finding chemistry. If you think that’s a convoluted path, just wait to hear about his academic and professional work journeys.
You’ll revel in following this journey, and in the lessons and diverse skills learned along the way. Join us to hear it yourself, from who might just be the most interesting man in chemistry!
Related episodes:
Bonus content!
A free thank you gift for our listeners!
We read every email so please share your questions and feedback with us!
We're diving into an important topic: the representation of women in STEM careers. Despite making up about 50% of the population, women hold only around 34% of STEM positions, with even fewer—approximately 25%—in the chemicals industry. Why is this the case, and what can be done to change it?
Kylie Wittle (Co-Founder & Operations Director of Women in Chemicals) and Amelia Greene (Co-Founder and Executive Director of Women in Chemicals), join us to explore this issue. Kylie and Amelia founded Women in Chemicals (WIC) to create opportunities and empower women in the chemicals industry. Initially driven by their personal experiences, over time, WIC has grown into a global resource supporting women and promoting diversity, equity, and inclusion within industry companies.
Join us as we explore the history of the chemicals industry, the current state of women's representation, and the ongoing efforts to ensure unbiased opportunities for women. Don't miss this insightful conversation!
Related episodes:
Bonus content!
A free thank you gift for our listeners!
We read every email so please share your questions and feedback with us!
Strap in for this charged up conversation. Battery chemistry is a topic we’ve touched on before and is one we’ve committed to exploring further in this season. This conversation with Dr. Heather Platt, Co-Founder and Chief Battery Scientist at Platt Engineering Solutions, takes us on an expert-guided tour of battery chemistry.
This conversation quickly moves us through battery chemistries like lead/acid and metal sulfides and into more modern mixed metal oxides with reversible chemistry. Our discussion of the pros and cons of various chemistries, including lithium-ion, touches on complex considerations including power density, voltage, global material sourcing, safety, and more. Manufacturing methods and the micro and nanostructures of battery materials are also discussed.
If you’re excited about the future of the battery field you’ll be sure to enjoy Heather’s views on up-and-coming battery technologies, including solid state and sodium-ion chemistries.
Related episodes:
Bonus content:
A free thank you gift for our listeners!
We read every email so please share your questions and feedback with us!
Join our host, Dr. Paolo Braiuca, as he chats with some of the most fascinating scientists around the globe doing trailblazing work in a variety of fields and industries. Learn about their personal stories, notable contributions, and the enthusiasm for discovery that unites them all. This is a podcast for anyone who wants to learn more about science and the brilliant minds advancing it.
Now in the fifth season of our podcast, in store are more inspiring conversations about trending topics with influential guest that chemists, students and science enthusiasts will undoubtedly find captivating. In the mid-season checkpoint, Paolo reflects on the evolution of the series and gives a glimpse of what’s to come. Diversity remains a priority but, there will be deeper looks at topics like battery technology, PFAS chemistry, chemical biology, and sustainability in organic chemistry.
If you’re new to the podcast, now is the time to catch up and get ready for what’s to come. If you’re a loyal listener, Paolo has a special message for you and a humble request Regardless, we’re happy you found us and we’re looking forward to sharing more with you soon!
Bonus content!
A free thank you gift for our listeners!
We read every email so please share your questions and feedback with us!
Anyone that’s followed this podcast will know that Paolo’s final question to each guest is, “What advice would you like to share with younger scientists just starting their career?” Here, our guest, Dr. Monte Helm, professor of chemistry at Metropolitan Community College in Kansas City, shares advice that he clearly lives by, which is, “… be flexible ii your career and follow what you think you’ll be passionate about.”
While Monte’s academic training is in inorganic chemistry, he’ll tell you he’s always cared about teaching as much as the subject itself. Join us to meet this lifelong learner and teacher, that’s parlayed his passion for phosphine chemistry and teaching into roles as a postdoctoral researcher, a professor at an undergraduate research institution, a deputy director at a national laboratory, and now a teaching-focused role at a community college. A set of roles that definitely demonstrates flexibility!
In addition to learning about the fundamental research Dr. Helm has done in crown-phosphine and phosphine ligand synthesis, we learn about his unconventional career path and the key role that mentors and sabbatical opportunities played in its development. He talks openly about the joys and challenges of each role, about his motivations for each career change, and his current love of teaching at a community college where he’s able to focus solely on teaching to students that may not have had positive primary educational experiences in science.
Related episodes:
Bonus content!
A free thank you gift for our listeners!
We read every email so please share your questions and feedback with us!
Most of us don’t grow up across the street from a chemistry building or know from an early age that we want to be a scientist, but Alan Dyke, VP of Business Development for ProChem, Inc. (CTO of Boulder Scientific Company at the time of the interview) did and became a chemist. Dr. Alan Dyke, former colleague, and friend of Paolo’s, shares his career path and discusses the history and current state of the field of catalysis.
With a father that taught university-level chemistry, and a brother in the field, it may not be surprising that Alan Dyke became a chemist, but it is surprising is that he’s considered to be the outcast of the family for choosing a commercial career instead of taking an academic route. But, as he’ll passionately reveal, there are upsides to choosing a non-academic career.
Join us for a wonderful conversation where Paolo and Alan recount their shared history and the evolution of the catalysis field over recent decades. They discuss the evolution of homogeneous cross-coupling, biocatalysis, metathesis, and metallocene chemistry. Application of catalysis to fields as varied as pharmaceuticals and polymers is discussed, along with sustainability and other trends and dynamics in the field. Overcome your activation energy and join us!
Related episodes:
Bonus content!
A free thank you gift for our listeners!
We read every email so please share your questions and feedback with us!
The podcast currently has 57 episodes available.
5,872 Listeners
595 Listeners
760 Listeners
800 Listeners
127 Listeners
32,046 Listeners
214 Listeners
22,234 Listeners
419 Listeners
449 Listeners
43,197 Listeners
11,719 Listeners
7,675 Listeners
268 Listeners
12 Listeners