Streaming Audio: Apache Kafka® & Real-Time Data

Build a Real Time AI Data Platform with Apache Kafka


Listen Later

Is it possible to build a real-time data platform without using stateful stream processing? Forecasty.ai is an artificial intelligence platform for forecasting commodity prices, imparting insights into the future valuations of raw materials for users. Nearly all AI models are batch-trained once, but precious commodities are linked to ever-fluctuating global financial markets, which require real-time insights. In this episode, Ralph Debusmann (CTO, Forecasty.ai) shares their journey of migrating from a batch machine learning platform to a real-time event streaming system with Apache Kafka® and delves into their approach to making the transition frictionless. 

Ralph explains that Forecasty.ai was initially built on top of batch processing, however, updating the models with batch-data syncs was costly and environmentally taxing. There was also the question of scalability—progressing from 60 commodities on offer to their eventual plan of over 200 commodities. Ralph observed that most real-time systems are non-batch, streaming-based real-time data platforms with stateful stream processing, using Kafka Streams, Apache Flink®, or even Apache Samza. However, stateful stream processing involves resources, such as teams of stream processing specialists to solve the task. 

With the existing team, Ralph decided to build a real-time data platform without using any sort of stateful stream processing. They strictly keep to the out-of-the-box components, such as Kafka topics, Kafka Producer API, Kafka Consumer API, and other Kafka connectors, along with a real-time database to process data streams and implement the necessary joins inside the database. 

Additionally, Ralph shares the tool he built to handle historical data, kash.py—a Kafka shell based on Python; discusses issues the platform needed to overcome for success, and how they can make the migration from batch processing to stream processing painless for the data science team. 

EPISODE LINKS

  • Kafka Streams 101 course
  • The Difference Engine for Unlocking the Kafka Black Box
  • GitHub repo: kash.py
  • Watch the video version of this podcast
  • Kris Jenkins’ Twitter
  • Streaming Audio Playlist 
  • Join the Confluent Community
  • Learn more with Kafka tutorials, resources, and guides at Confluent Developer
  • Live demo: Intro to Event-Driven Microservices with Confluent
  • Use PODCAST100 to get an additional $100 of free Confluent Cloud usage (details)   
...more
View all episodesView all episodes
Download on the App Store

Streaming Audio: Apache Kafka® & Real-Time DataBy Confluent, founded by the original creators of Apache Kafka®

  • 4.8
  • 4.8
  • 4.8
  • 4.8
  • 4.8

4.8

44 ratings


More shows like Streaming Audio: Apache Kafka® & Real-Time Data

View all
Planet Money by NPR

Planet Money

30,892 Listeners

The Changelog: Software Development, Open Source by Changelog Media

The Changelog: Software Development, Open Source

285 Listeners

Talk Python To Me by Michael Kennedy

Talk Python To Me

586 Listeners

Software Engineering Daily by Software Engineering Daily

Software Engineering Daily

631 Listeners

AWS Podcast by Amazon Web Services

AWS Podcast

201 Listeners

DataFramed by DataCamp

DataFramed

268 Listeners

Tech Lead Journal by Henry Suryawirawan

Tech Lead Journal

12 Listeners

System Design by Wes and Kevin

System Design

93 Listeners

Postgres FM by Nikolay Samokhvalov and Michael Christofides

Postgres FM

20 Listeners

Kubernetes for Humans by Komodor

Kubernetes for Humans

2 Listeners

Learn System Design by Ben Kitchell

Learn System Design

32 Listeners