
Sign up to save your podcasts
Or


In this episode of the Epigenetics Podcast, we talked with Arnau Sebé-Pedrós from the Center for Genomic Regulation in Barcelona about his work on chromatin evolution.
The Interview starts by examining specific research findings, including his seminal 2018 paper demonstrating whole-organism single-cell transcriptomics to map larval and adult cell types in the model organism Nematostella vectensis. Dr. Sebe-Pedros recounted the challenges and triumphs faced when delving into single-cell studies of non-model organisms, revealing the innovative strategies employed in the lab to overcome these hurdles.
Shifting gears, we touched upon his work comparing cell types and molecular pathways in reef-building corals through single-cell RNA sequencing, contributing to our understanding of evolutionary conservation and divergence within the cnidarian lineage. We discussed how this comparative approach not only adds to knowledge about coral biology but also enhances methodological frameworks in ecological studies.
In addition, Dr. Sebe-Pedros shared insights into ongoing efforts to reconstruct eukaryotic chromatin evolution using comparative proteomics and genomics analysis, as well as the mechanisms of genomic regulation in various species. His reflections on the sharing of experimental insights across research groups illustrated the collaborative spirit prevalent in the scientific community, particularly regarding endeavors like the Biodiversity Cell Atlas consortium aimed at expanding single-cell efforts across the tree of life.
The episode culminated with Dr. Sebe-Pedros’s thoughts on the revolutionary impact of functional genomic technologies and the vast potential they hold for answering longstanding questions in evolutionary biology. With an emphasis on epigenetics, he defined this field as encompassing any information not encoded directly in the DNA, especially in its role in establishing cell identity and differentiation.
https://www.biodiversitycellatlas.org
Sebé-Pedrós, A., Saudemont, B., Chomsky, E., Plessier, F., Mailhé, M. P., Renno, J., Loe-Mie, Y., Lifshitz, A., Mukamel, Z., Schmutz, S., Novault, S., Steinmetz, P. R. H., Spitz, F., Tanay, A., & Marlow, H. (2018). Cnidarian Cell Type Diversity and Regulation Revealed by Whole-Organism Single-Cell RNA-Seq. Cell, 173(6), 1520–1534.e20. https://doi.org/10.1016/j.cell.2018.05.019
Sebé-Pedrós, A., Chomsky, E., Pang, K., Lara-Astiaso, D., Gaiti, F., Mukamel, Z., Amit, I., Hejnol, A., Degnan, B. M., & Tanay, A. (2018). Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nature ecology & evolution, 2(7), 1176–1188. https://doi.org/10.1038/s41559-018-0575-6
Kim, I.V., Navarrete, C., Grau-Bové, X. et al. Chromatin loops are an ancestral hallmark of the animal regulatory genome. Nature 642, 1097–1105 (2025). https://doi.org/10.1038/s41586-025-08960-w
Evolutionary Epigenetic Clocks and Epigenetic Inheritance in Plants (Frank Johannes)
Neuroepigenetic Mechanisms and Primate Epigenome Evolution (Boyan Bonev)
Transposable Elements in Gene Regulation and Evolution (Marco Trizzino)
Epigenetics Podcast on Mastodon
Epigenetics Podcast on Bluesky
Dr. Stefan Dillinger on LinkedIn
Active Motif on LinkedIn
Active Motif on Bluesky
Email: [email protected]
By Active Motif4.9
4343 ratings
In this episode of the Epigenetics Podcast, we talked with Arnau Sebé-Pedrós from the Center for Genomic Regulation in Barcelona about his work on chromatin evolution.
The Interview starts by examining specific research findings, including his seminal 2018 paper demonstrating whole-organism single-cell transcriptomics to map larval and adult cell types in the model organism Nematostella vectensis. Dr. Sebe-Pedros recounted the challenges and triumphs faced when delving into single-cell studies of non-model organisms, revealing the innovative strategies employed in the lab to overcome these hurdles.
Shifting gears, we touched upon his work comparing cell types and molecular pathways in reef-building corals through single-cell RNA sequencing, contributing to our understanding of evolutionary conservation and divergence within the cnidarian lineage. We discussed how this comparative approach not only adds to knowledge about coral biology but also enhances methodological frameworks in ecological studies.
In addition, Dr. Sebe-Pedros shared insights into ongoing efforts to reconstruct eukaryotic chromatin evolution using comparative proteomics and genomics analysis, as well as the mechanisms of genomic regulation in various species. His reflections on the sharing of experimental insights across research groups illustrated the collaborative spirit prevalent in the scientific community, particularly regarding endeavors like the Biodiversity Cell Atlas consortium aimed at expanding single-cell efforts across the tree of life.
The episode culminated with Dr. Sebe-Pedros’s thoughts on the revolutionary impact of functional genomic technologies and the vast potential they hold for answering longstanding questions in evolutionary biology. With an emphasis on epigenetics, he defined this field as encompassing any information not encoded directly in the DNA, especially in its role in establishing cell identity and differentiation.
https://www.biodiversitycellatlas.org
Sebé-Pedrós, A., Saudemont, B., Chomsky, E., Plessier, F., Mailhé, M. P., Renno, J., Loe-Mie, Y., Lifshitz, A., Mukamel, Z., Schmutz, S., Novault, S., Steinmetz, P. R. H., Spitz, F., Tanay, A., & Marlow, H. (2018). Cnidarian Cell Type Diversity and Regulation Revealed by Whole-Organism Single-Cell RNA-Seq. Cell, 173(6), 1520–1534.e20. https://doi.org/10.1016/j.cell.2018.05.019
Sebé-Pedrós, A., Chomsky, E., Pang, K., Lara-Astiaso, D., Gaiti, F., Mukamel, Z., Amit, I., Hejnol, A., Degnan, B. M., & Tanay, A. (2018). Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nature ecology & evolution, 2(7), 1176–1188. https://doi.org/10.1038/s41559-018-0575-6
Kim, I.V., Navarrete, C., Grau-Bové, X. et al. Chromatin loops are an ancestral hallmark of the animal regulatory genome. Nature 642, 1097–1105 (2025). https://doi.org/10.1038/s41586-025-08960-w
Evolutionary Epigenetic Clocks and Epigenetic Inheritance in Plants (Frank Johannes)
Neuroepigenetic Mechanisms and Primate Epigenome Evolution (Boyan Bonev)
Transposable Elements in Gene Regulation and Evolution (Marco Trizzino)
Epigenetics Podcast on Mastodon
Epigenetics Podcast on Bluesky
Dr. Stefan Dillinger on LinkedIn
Active Motif on LinkedIn
Active Motif on Bluesky
Email: [email protected]

21,974 Listeners

43,864 Listeners

32,020 Listeners

30,707 Listeners

43,579 Listeners

1,385 Listeners

758 Listeners

12,204 Listeners

59,064 Listeners

826 Listeners

1,450 Listeners

24,388 Listeners

125 Listeners

6,085 Listeners

2,072 Listeners