
Sign up to save your podcasts
Or


Martijn van den Ende, Université Côte d'Azur
Already for several years it has been suggested that Distributed Acoustic Sensing (DAS) could be a convenient, low-cost solution for Earthquake Early Warning (EEW). Several studies have investigated the potential of DAS in this context, and demonstrated their methods using small local earthquakes. Unfortunately, DAS has a finite dynamic range that is easily exceeded in the near-field of large earthquakes, which severely hampers any EEW efforts. In this talk, I will present a detailed analysis of the dynamic range, and how it impacts EEW: where does it come from? What can we do when the dynamic range is exceeded? And is there still hope for DAS-based EEW systems?
By U.S. Geological Survey4.9
88 ratings
Martijn van den Ende, Université Côte d'Azur
Already for several years it has been suggested that Distributed Acoustic Sensing (DAS) could be a convenient, low-cost solution for Earthquake Early Warning (EEW). Several studies have investigated the potential of DAS in this context, and demonstrated their methods using small local earthquakes. Unfortunately, DAS has a finite dynamic range that is easily exceeded in the near-field of large earthquakes, which severely hampers any EEW efforts. In this talk, I will present a detailed analysis of the dynamic range, and how it impacts EEW: where does it come from? What can we do when the dynamic range is exceeded? And is there still hope for DAS-based EEW systems?