
Sign up to save your podcasts
Or
Episode Summary: Data Scientist Elliott Whitling joins us to discuss how marketing attribution vendors probably work behind the scenes. He outlines why you should ask the vendor how the vendor's algorithm learns and why you need to ask about identifying false positives. Then we look at what big data means for your anonymity. Finally, we dive into the differences between data scientists, data engineers and data analysts. Marketing Attribution Vendor Buying Guide: How does the algorithm learn? Is the vendor using supervised or unsupervised learning? How does the vendor identify false positives? What is the rate of false positives? Ask for the ROC curve. Understand the data going in, can the vendor technically access that data and will it give them enough to make an accurate model?
Show Outline:
0:00 - Intro / Introductions
1:02 - The data science of marketing attribution vendors
17:36 - Differential Privacy: Protecting privacy in large datasets.
28:40 - Data Scientist vs Data Engineer
34:08 - What is a large data set?
36:05 - Closing
Links: Elliott's Blog Differential Privacy Apple and Differential Privacy Get Social With Us: Still Unsponsored Facebook Page Still Unsponsored on Instagram Chris on Twitter Chris on Instagram Zach on Twitter Zach on Instagram
5
22 ratings
Episode Summary: Data Scientist Elliott Whitling joins us to discuss how marketing attribution vendors probably work behind the scenes. He outlines why you should ask the vendor how the vendor's algorithm learns and why you need to ask about identifying false positives. Then we look at what big data means for your anonymity. Finally, we dive into the differences between data scientists, data engineers and data analysts. Marketing Attribution Vendor Buying Guide: How does the algorithm learn? Is the vendor using supervised or unsupervised learning? How does the vendor identify false positives? What is the rate of false positives? Ask for the ROC curve. Understand the data going in, can the vendor technically access that data and will it give them enough to make an accurate model?
Show Outline:
0:00 - Intro / Introductions
1:02 - The data science of marketing attribution vendors
17:36 - Differential Privacy: Protecting privacy in large datasets.
28:40 - Data Scientist vs Data Engineer
34:08 - What is a large data set?
36:05 - Closing
Links: Elliott's Blog Differential Privacy Apple and Differential Privacy Get Social With Us: Still Unsponsored Facebook Page Still Unsponsored on Instagram Chris on Twitter Chris on Instagram Zach on Twitter Zach on Instagram