
Sign up to save your podcasts
Or


What are the new ways to describe your data in pandas 2.0? Will the addition of Apache Arrow to the data back end foster the growth of data interoperability? This week on the show, we talk with pandas core developer Marc Garcia about the release of pandas 2.0.
Marc shares his background and work on pandas. We discuss the history of data representation in pandas and the need to move beyond NumPy. We also talk about how Apache Arrow only solves some of the issues.
We dig into the potential of an Apache Arrow back end and how it could offer interoperability between data platforms. We also cover the moderate adoption and backward-compatibility concerns. Marc also shares his thoughts on making pandas more extensible.
Course Spotlight: The pandas DataFrame: Working With Data Efficiently
In this course, you’ll get started with pandas DataFrames, which are powerful and widely used two-dimensional data structures. You’ll learn how to perform basic operations with data, handle missing values, work with time-series data, and visualize data from a pandas DataFrame.
Topics:
Show Links:
Level up your Python skills with our expert-led courses:
Support the podcast & join our community of Pythonistas
By Real Python4.7
139139 ratings
What are the new ways to describe your data in pandas 2.0? Will the addition of Apache Arrow to the data back end foster the growth of data interoperability? This week on the show, we talk with pandas core developer Marc Garcia about the release of pandas 2.0.
Marc shares his background and work on pandas. We discuss the history of data representation in pandas and the need to move beyond NumPy. We also talk about how Apache Arrow only solves some of the issues.
We dig into the potential of an Apache Arrow back end and how it could offer interoperability between data platforms. We also cover the moderate adoption and backward-compatibility concerns. Marc also shares his thoughts on making pandas more extensible.
Course Spotlight: The pandas DataFrame: Working With Data Efficiently
In this course, you’ll get started with pandas DataFrames, which are powerful and widely used two-dimensional data structures. You’ll learn how to perform basic operations with data, handle missing values, work with time-series data, and visualize data from a pandas DataFrame.
Topics:
Show Links:
Level up your Python skills with our expert-led courses:
Support the podcast & join our community of Pythonistas

271 Listeners

289 Listeners

624 Listeners

585 Listeners

288 Listeners

302 Listeners

215 Listeners

987 Listeners

210 Listeners

190 Listeners

269 Listeners

210 Listeners

203 Listeners

64 Listeners

64 Listeners