
Sign up to save your podcasts
Or


In this episode, I discuss the basic distinguishing rule of Extensional Martin-Loef Type Theory, namely equality reflection. This rule says that propositional equality implies definitional equality. Algorithmically, it would imply that the type checker should do arbitrary proof search during type checking, to see if two expressions are definitionally equal. This immediately gives us undecidability of type checking for the theory, at least as usually realized.
By Aaron Stump5
1919 ratings
In this episode, I discuss the basic distinguishing rule of Extensional Martin-Loef Type Theory, namely equality reflection. This rule says that propositional equality implies definitional equality. Algorithmically, it would imply that the type checker should do arbitrary proof search during type checking, to see if two expressions are definitionally equal. This immediately gives us undecidability of type checking for the theory, at least as usually realized.

288 Listeners

4,171 Listeners

7,295 Listeners

576 Listeners

551 Listeners

16,381 Listeners

14 Listeners

29 Listeners

67 Listeners