
Sign up to save your podcasts
Or
Lerne jetzt auch for free von internationalen Testing-Experten. 👉🏻 Im Podcast-Spinoff Software Testing Unleashed
"Wenn man sich die Fairness-Debatte rund um Künstliche Intelligenz mal anschaut, wurde in einem ganz spannenden Papier von Kleinberg festgestellt, dass, was wir so objektiv Fairness nennen, sich teilweise widerspricht" - Marc Hauer, Tobias Krafft
Künstliche Intelligenz soll den Menschen unterstützen. Ob das nun in der Fabrik beim Schrauben zählen ist, oder ob sie dem Chefarzt bei einer komplizierten OP assistiert. Doch diese unterschiedlichen Einsatzbereiche haben enorm unterschiedliche Anforderungen an die KI. Die ethischen Grundsätze sind auch weltweit unterschiedlich. Also was heißt denn eigentlich Fairness? Und wo beginnt Diskriminierung und Gerechtigkeit? Die KI soll schon nach unseren Werten handeln, dafür muss sie trainiert werden- doch vorher muss man diese Werte definieren.
Marc Hauer ist wissenschaftlicher Mitarbeiter am Algorithm Accountability Lab der RPTU Kaiserslautern, spezialisiert auf die Gestaltung verantwortungsvoller KI-Systeme. Er leitet den DIN SPEC Arbeitskreis "Fairness von KI in Finanzdienstleistungen" und ist freiberuflich als Fachreferent und Berater im Bereich Algorithmen und KI tätig.
Tobias D. Krafft ist Doktorand im Bereich "Algorithm Accountability" an der TU Kaiserslautern und Geschäftsführer der Trusted AI GmbH, fokussiert auf Blackbox-Analysen und KI-Regulierung. Er leitet die DIN-Arbeitsgruppe „Ethik/Responsible AI“ und erhielt 2017 den Weizenbaumpreis für seine Forschungen im gesellschaftlichen Kontext von KI. Zudem engagiert er sich in der Gesellschaft für Informatik für den Studiengang Sozioinformatik.
Highlights:
Danke an die Community-Partner des Podcasts:Alliance for Qualification | ASQF | Austrian Testing Board | dpunkt.verlag | German Testing Board | German Testing Day | GI Fachgruppe TAV | Heise | HANSER Verlag | ISTQB | iSQI GmbH | oop | QS-TAG | SIGS-DATACOM | skillsclub | Swiss Testing Board | TACON Credits: Sound | Grafik
Lerne jetzt auch for free von internationalen Testing-Experten. 👉🏻 Im Podcast-Spinoff Software Testing Unleashed
"Wenn man sich die Fairness-Debatte rund um Künstliche Intelligenz mal anschaut, wurde in einem ganz spannenden Papier von Kleinberg festgestellt, dass, was wir so objektiv Fairness nennen, sich teilweise widerspricht" - Marc Hauer, Tobias Krafft
Künstliche Intelligenz soll den Menschen unterstützen. Ob das nun in der Fabrik beim Schrauben zählen ist, oder ob sie dem Chefarzt bei einer komplizierten OP assistiert. Doch diese unterschiedlichen Einsatzbereiche haben enorm unterschiedliche Anforderungen an die KI. Die ethischen Grundsätze sind auch weltweit unterschiedlich. Also was heißt denn eigentlich Fairness? Und wo beginnt Diskriminierung und Gerechtigkeit? Die KI soll schon nach unseren Werten handeln, dafür muss sie trainiert werden- doch vorher muss man diese Werte definieren.
Marc Hauer ist wissenschaftlicher Mitarbeiter am Algorithm Accountability Lab der RPTU Kaiserslautern, spezialisiert auf die Gestaltung verantwortungsvoller KI-Systeme. Er leitet den DIN SPEC Arbeitskreis "Fairness von KI in Finanzdienstleistungen" und ist freiberuflich als Fachreferent und Berater im Bereich Algorithmen und KI tätig.
Tobias D. Krafft ist Doktorand im Bereich "Algorithm Accountability" an der TU Kaiserslautern und Geschäftsführer der Trusted AI GmbH, fokussiert auf Blackbox-Analysen und KI-Regulierung. Er leitet die DIN-Arbeitsgruppe „Ethik/Responsible AI“ und erhielt 2017 den Weizenbaumpreis für seine Forschungen im gesellschaftlichen Kontext von KI. Zudem engagiert er sich in der Gesellschaft für Informatik für den Studiengang Sozioinformatik.
Highlights:
Danke an die Community-Partner des Podcasts:Alliance for Qualification | ASQF | Austrian Testing Board | dpunkt.verlag | German Testing Board | German Testing Day | GI Fachgruppe TAV | Heise | HANSER Verlag | ISTQB | iSQI GmbH | oop | QS-TAG | SIGS-DATACOM | skillsclub | Swiss Testing Board | TACON Credits: Sound | Grafik