In-Ear Insights from Trust Insights

In-Ear Insights: Data Preparation for Generative AI


Listen Later

In this episode of In-Ear Insights, the Trust Insights podcast, Katie and Chris discuss data preparation for generative AI. You’ll learn why having high-quality data is the essential ingredient for getting valuable insights from AI tools. Discover how to ensure your data is clean, credible, and comprehensive, avoiding the pitfalls of ‘garbage in, garbage out’. Explore practical steps you can take to master data quality and make generative AI work effectively for you. Tune in to learn how to take control of your data and unlock the true potential of generative AI!

Watch the video here:

Can’t see anything? Watch it on YouTube here.

Listen to the audio here:

https://traffic.libsyn.com/inearinsights/tipodcast-data-preparation-for-generative-ai.mp3

Download the MP3 audio here.

  • Need help with your company’s data and analytics? Let us know!
  • Join our free Slack group for marketers interested in analytics!
  • [podcastsponsor]

    Machine-Generated Transcript

    What follows is an AI-generated transcript. The transcript may contain errors and is not a substitute for listening to the episode.

    Christopher S. Penn – 00:00

    In this week’s In-Ear Insights, we’re talking data preparation for AI this week both on the Trust Insights live stream Thursday at 1pm Eastern Time. Remember, the USA if you’re a non-USA person, the USA has moved to summertime already, and I thought we’d talk today, Katie, about kind of why this is important. We’ll talk about the how on the live stream, but we’ll talk about the why and to degree the what. So before we begin, let me ask you what questions do you have about data preparation for generative AI?

    Katie Robbert – 00:35

    I don’t so much have questions because this is the kind of thing that I am specifically well versed in. Not so much the how, but the why. I did a panel last week at Worcester Polytech for the Women in Data Science, and this actually came up a lot. Surprisingly, the reason it came up a lot, specifically data governance and did good data quality, was there were a lot of questions around, what should I be thinking about in my degree? What should I be focusing on? If AI is just going to automate everything, where do I, a data scientist, where do I, a PhD candidate, fit in? A lot of the students there were academically focused rather than corporate field focused.

    Katie Robbert – 01:29

    I took the opportunity to talk about why data governance and good data quality is a foundational skill that regardless of the technology is going to be relevant. Having a good handle on what that actually means and why it’s important. If you’re unsure of where to focus, that’s a good place to start because it’s something that is always going to be in style, is always going to be on trend is good data quality. Because if you don’t have good data going into these pieces of software, and generative AI is just another piece of software, you’re going to have garbage coming out, and the outcomes are not going to be what you want them to do, and you’ll spend all of these times with these models and your random forest analysis and all of your other things, and nothing good i

    ...more
    View all episodesView all episodes
    Download on the App Store

    In-Ear Insights from Trust InsightsBy Trust Insights

    • 5
    • 5
    • 5
    • 5
    • 5

    5

    9 ratings


    More shows like In-Ear Insights from Trust Insights

    View all
    The Artificial Intelligence Show by Paul Roetzer and Mike Kaput

    The Artificial Intelligence Show

    171 Listeners

    AI Security Podcast by Kaizenteq Team

    AI Security Podcast

    4 Listeners