
Sign up to save your podcasts
Or


In this episode of In-Ear Insights, the Trust Insights podcast, Katie and Chris tackle an issue of bias in AI, including identifying it, coming up with strategies to mitigate it, and proactively guarding against it. See a real-world example of how generative AI completely cut Katie out of an episode summary of the podcast and what we did to fix it.
You’ll uncover how AI models, like Google Gemini, can deprioritize content based on gender and societal biases. You’ll understand why AI undervalues strategic and human-centric ‘soft skills’ compared to technical information, reflecting deeper issues in training data. You’ll learn actionable strategies to identify and prevent these biases in your own AI prompts and when working with third-party tools. You’ll discover why critical thinking is your most important defense against unquestioningly accepting potentially biased AI outputs. Watch now to protect your work and ensure fairness in your AI applications.
Watch the video here:
Can’t see anything? Watch it on YouTube here.
Listen to the audio here:
Download the MP3 audio here.
[podcastsponsor]
What follows is an AI-generated transcript. The transcript may contain errors and is not a substitute for listening to the episode.
Christopher S. Penn – 00:00
Christopher S. Penn – 00:44
So I gave it the transcript and I said, “Make me my stuff.” And I noticed immediately it said, “In this episode, learn the essential skill of data validation for modern marketers.” Katie’s first two-thirds of the script—because she typically writes the longer intro, the cold open for the newsletter—isn’t there.
And I said, “You missed half the show.” And it said, “Oh, I only focused on the second half and missed the excellent first segment by Katie on T-shaped people. Thank you for the correction.” And it spit out the correct version after that. And I said, “Why? Why did you miss that?”
Christopher S. Penn – 01:43
By Trust Insights5
99 ratings
In this episode of In-Ear Insights, the Trust Insights podcast, Katie and Chris tackle an issue of bias in AI, including identifying it, coming up with strategies to mitigate it, and proactively guarding against it. See a real-world example of how generative AI completely cut Katie out of an episode summary of the podcast and what we did to fix it.
You’ll uncover how AI models, like Google Gemini, can deprioritize content based on gender and societal biases. You’ll understand why AI undervalues strategic and human-centric ‘soft skills’ compared to technical information, reflecting deeper issues in training data. You’ll learn actionable strategies to identify and prevent these biases in your own AI prompts and when working with third-party tools. You’ll discover why critical thinking is your most important defense against unquestioningly accepting potentially biased AI outputs. Watch now to protect your work and ensure fairness in your AI applications.
Watch the video here:
Can’t see anything? Watch it on YouTube here.
Listen to the audio here:
Download the MP3 audio here.
[podcastsponsor]
What follows is an AI-generated transcript. The transcript may contain errors and is not a substitute for listening to the episode.
Christopher S. Penn – 00:00
Christopher S. Penn – 00:44
So I gave it the transcript and I said, “Make me my stuff.” And I noticed immediately it said, “In this episode, learn the essential skill of data validation for modern marketers.” Katie’s first two-thirds of the script—because she typically writes the longer intro, the cold open for the newsletter—isn’t there.
And I said, “You missed half the show.” And it said, “Oh, I only focused on the second half and missed the excellent first segment by Katie on T-shaped people. Thank you for the correction.” And it spit out the correct version after that. And I said, “Why? Why did you miss that?”
Christopher S. Penn – 01:43

0 Listeners