
Sign up to save your podcasts
Or
In this episode of In-Ear Insights, the Trust Insights podcast, Katie and Chris discuss Retrieval Augmented Generation (RAG). You’ll learn what RAG is and how it can significantly improve the accuracy and relevance of AI responses by using your own data. You’ll understand the crucial differences between RAG and typical search engines or generative AI models, clarifying when RAG is truly needed. You’ll discover practical examples of when RAG becomes essential, especially for handling sensitive company information and proprietary knowledge. Tune in to learn when and how RAG can be a game-changer for your data strategy and when simpler AI tools will suffice!
Watch the video here:
Can’t see anything? Watch it on YouTube here.
Listen to the audio here:
Download the MP3 audio here.
[podcastsponsor]
What follows is an AI-generated transcript. The transcript may contain errors and is not a substitute for listening to the episode.
Christopher S. Penn – 00:00
Christopher S. Penn – 00:02
Christopher S. Penn – 00:06
Christopher S. Penn – 00:07
Christopher S. Penn – 00:09
Katie Robbert – 00:17
Katie Robbert – 00:41
Katie Robbert – 00:44
Katie Robbert – 01:05
Katie Robbert – 01:07
Christopher S. Penn – 01:09
Probably one of the most well-known and easiest-to-use systems like this is Google’s free NotebookLM where you just put in a bunch of documents. It does all the work—the technical stuff of tokenization and embeddings and all that stuff. And then you can chat with your documents and say, ‘Well, what’s in this?’
In our examples, we’ve
5
99 ratings
In this episode of In-Ear Insights, the Trust Insights podcast, Katie and Chris discuss Retrieval Augmented Generation (RAG). You’ll learn what RAG is and how it can significantly improve the accuracy and relevance of AI responses by using your own data. You’ll understand the crucial differences between RAG and typical search engines or generative AI models, clarifying when RAG is truly needed. You’ll discover practical examples of when RAG becomes essential, especially for handling sensitive company information and proprietary knowledge. Tune in to learn when and how RAG can be a game-changer for your data strategy and when simpler AI tools will suffice!
Watch the video here:
Can’t see anything? Watch it on YouTube here.
Listen to the audio here:
Download the MP3 audio here.
[podcastsponsor]
What follows is an AI-generated transcript. The transcript may contain errors and is not a substitute for listening to the episode.
Christopher S. Penn – 00:00
Christopher S. Penn – 00:02
Christopher S. Penn – 00:06
Christopher S. Penn – 00:07
Christopher S. Penn – 00:09
Katie Robbert – 00:17
Katie Robbert – 00:41
Katie Robbert – 00:44
Katie Robbert – 01:05
Katie Robbert – 01:07
Christopher S. Penn – 01:09
Probably one of the most well-known and easiest-to-use systems like this is Google’s free NotebookLM where you just put in a bunch of documents. It does all the work—the technical stuff of tokenization and embeddings and all that stuff. And then you can chat with your documents and say, ‘Well, what’s in this?’
In our examples, we’ve
171 Listeners
4 Listeners