
Sign up to save your podcasts
Or


In this episode of Generative AI 101, we break down the fundamental concepts of Natural Language Processing (NLP). Imagine trying to read a book that's one long, unbroken string of text—impossible, right? That’s where tokenization comes in, breaking text into manageable chunks. We’ll also cover stemming and lemmatization, techniques for reducing words to their root forms, and explain the importance of stop words—the linguistic background noise. Finally, we’ll explore Named Entity Recognition (NER), which identifies key names and places in text. These basics form the foundation of NLP, making our interactions with technology smoother and more intuitive.
Connect with Emily Laird on LinkedIn
By Emily Laird4.6
1919 ratings
In this episode of Generative AI 101, we break down the fundamental concepts of Natural Language Processing (NLP). Imagine trying to read a book that's one long, unbroken string of text—impossible, right? That’s where tokenization comes in, breaking text into manageable chunks. We’ll also cover stemming and lemmatization, techniques for reducing words to their root forms, and explain the importance of stop words—the linguistic background noise. Finally, we’ll explore Named Entity Recognition (NER), which identifies key names and places in text. These basics form the foundation of NLP, making our interactions with technology smoother and more intuitive.
Connect with Emily Laird on LinkedIn

334 Listeners

152 Listeners

208 Listeners

197 Listeners

154 Listeners

227 Listeners

608 Listeners

274 Listeners

107 Listeners

54 Listeners

173 Listeners

55 Listeners

146 Listeners

62 Listeners

24 Listeners