
Sign up to save your podcasts
Or


Discussion of the connection between normalization and logical consistency. One approach is to prove normalization and type preservation, to show (in proof-theoretic terms) that all detours can be eliminated from proofs (this is normalization) and that the resulting proof still proves the same theorem (this is type preservation). I mention an alternative I use for Cedille, which is to use a realizability semantics (often used for normalization proofs) directly to prove consistency.
By Aaron Stump5
1919 ratings
Discussion of the connection between normalization and logical consistency. One approach is to prove normalization and type preservation, to show (in proof-theoretic terms) that all detours can be eliminated from proofs (this is normalization) and that the resulting proof still proves the same theorem (this is type preservation). I mention an alternative I use for Cedille, which is to use a realizability semantics (often used for normalization proofs) directly to prove consistency.

289 Listeners

4,178 Listeners

7,226 Listeners

571 Listeners

505 Listeners

15,973 Listeners

13 Listeners

29 Listeners

62 Listeners