Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 05/06

Photogeneration of reactive intermediates


Listen Later

Bond cleavage and formation are key steps in chemistry and biochemistry. The present work investigates the generation of diphenylmethyl cations (Ph2CH+) via photoinduced bond cleavage of diphenylmethyl derivatives with a cationic or neutral leaving group. The resulting Ph2CH+ cations and its numerous derivatives serve as reference electrophiles for one of the most extensive reactivity scales covering 40 orders of magnitude. In chapter 1, the focus is on the initial bond cleavage of diphenylmethyltriphenylphosphonium ions (Ph2CH−PPh3+) exhibiting a cationic leaving group. With the help of state-of-the-art quantum chemical and quantum dynamical methods, the reaction mechanism of the bond cleavage is revealed. Using a reduced model system, the potential energy surfaces can be calculated at the ONIOM level of theory along specially designed reactive coordinates. Two competing reaction channels emerge: a homolytic one in the S1 state and a heterolytic one in the ground state. They are connected via an energetically accessible conical intersection which makes an efficient generation of the observed Ph2CH+ cations feasible. In contradiction with the experiment in polar or moderately polar solvents, quantum dynamical calculations for the isolated molecule reveal the formation of Ph2CH• radicals. While electrostatic solvent effects are negligible in this system, dynamic solvent effects emerge as being essential to explain the molecular mechanism.
Two methods with increasing complexity to describe the dynamic impact of the solvent environment are developed. The first approach, the dynamic continuum ansatz, treats the environment implicitly. It uses Stokes’ law and the dynamic viscosity of the solvent in combination with quantum chemically and dynamically evaluated quantities to obtain the decelerating force exerted on the dissociating fragments. The ansatz does not require any fitting of parameters. The second method, the QD/MD approach, is based on an explicit treatment of the solvent surrounding. It combines molecular dynamics (MD) simulations of the reactant in a box of solvent molecules with quantum dynamics (QD) calculations of the reactant’s dynamics. In this way, a more detailed microscopic picture of the molecular process can be derived taking into account individual arrangements of the solvent. Both methods unveil the crucial impact of the solvent cage on the bond cleavage mechanism. It hinders the free dissociation in the S1 state and guides the molecular system to the conical intersection. QD simulations including the non-adiabatic coupling around the conical intersection show the formation of Ph2CH+ within ∼400 fs which compares well with the initial rise of the cation absorption in the experiment.
Chapter 2 deals with the position of the counterion X– in the ion pairs Ph2CH−PPh3+ X–,
PhCH2−PPh3+ X–, and (p-CF3-C6H4)CH2−PPh3+ X– in solution with X– being Cl–, Br–, BF4–, and SbF6–. These structures are essential to clarify the role of oxidizable counterions like e.g. Cl– during the initial bond cleavage in dichloromethane. The structures determined quantum chemically in dichloromethane show a similar counterion position than in the crystal. They are confirmed by the good accordance of the calculated and measured 1H NMR shifts. The C(α)–H···X– hydrogen bonds account for the pronounced counterion-dependent 1H NMR shifts of the C(α)–H in CD2Cl2. The strong downfield shift of the signals increases according to SbF6– < BF4– << Br– < Cl–.
The last part (chapter 3) focuses on the secondary processes within a few picoseconds to several nanoseconds after the C-Cl bond cleavage in diphenylmethylchloride in solution. Initially, the neutral leaving group Cl leads mainly to the formation of radical pairs; only a minor fraction of ion pairs is generated in the beginning. A combined Marcus-Smoluchowski model is used to simulate the interplay between geminate recombination, diffusional separation, and electron transfer of the radical and
...more
View all episodesView all episodes
Download on the App Store

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 05/06By Ludwig-Maximilians-Universität München


More shows like Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 05/06

View all
Center for Advanced Studies (CAS) Research Focus Evolutionary Biology (LMU) - HD by Center for Advanced Studies (CAS)

Center for Advanced Studies (CAS) Research Focus Evolutionary Biology (LMU) - HD

0 Listeners

Hegel lectures by Robert Brandom, LMU Munich by Robert Brandom, Axel Hutter

Hegel lectures by Robert Brandom, LMU Munich

7 Listeners

MCMP – Philosophy of Science by MCMP Team

MCMP – Philosophy of Science

1 Listeners

MCMP – Mathematical Philosophy (Archive 2011/12) by MCMP Team

MCMP – Mathematical Philosophy (Archive 2011/12)

6 Listeners

Sommerfeld Theory Colloquium (ASC) by Michael Haack

Sommerfeld Theory Colloquium (ASC)

2 Listeners

John Lennox - Hat die Wissenschaft Gott begraben? by Professor John C. Lennox, University of Oxford

John Lennox - Hat die Wissenschaft Gott begraben?

4 Listeners

MCMP by MCMP Team

MCMP

2 Listeners

Theoretical Physics Schools (ASC) by The Arnold Sommerfeld Center for Theoretical Physics (ASC)

Theoretical Physics Schools (ASC)

2 Listeners

Epistemology and Philosophy of Science: Prof. Dr. Stephan Hartmann – HD by Ludwig-Maximilians-Universität München

Epistemology and Philosophy of Science: Prof. Dr. Stephan Hartmann – HD

1 Listeners

NANO-BIO-PHYSICS SYMPOSIUM 06.09.2019 Day 1 by Ludwig-Maximilians-Universität München

NANO-BIO-PHYSICS SYMPOSIUM 06.09.2019 Day 1

0 Listeners